已知的展開式中,某一項(xiàng)的系數(shù)是它前一項(xiàng)系數(shù)的2倍,而又等于它后一項(xiàng)系數(shù)的
(Ⅰ)求展開后所有項(xiàng)系數(shù)之和及所有項(xiàng)的二項(xiàng)式系數(shù)之和;
(Ⅱ)求展開式中的有理項(xiàng).
【答案】分析:(Ⅰ) 由題意可得 Cnr2r=2 Cnr-12r-1,且 Cnr2r=,利用二項(xiàng)式系數(shù)的性質(zhì)求出n值.
(Ⅱ)由展開式中的通項(xiàng)  Tk+1=C7K•2K,k∈z,可知,故當(dāng) k=0,3,6時(shí)的項(xiàng)為有理項(xiàng).
解答:解:(Ⅰ)由題意可得 Cnr2r=2 Cnr-12r-1,且 Cnr2r=
解得 n=7,r=4.  故展開后所有項(xiàng)系數(shù)之和為(1+2)7=37,所有項(xiàng)的二項(xiàng)式系數(shù)之和為 2n=27
(Ⅱ)展開式中的通項(xiàng)  Tk+1=C7K•2K,k∈z,故當(dāng) k=0,3,6時(shí)的項(xiàng)為有理項(xiàng),
故有理項(xiàng)為第一項(xiàng)  T1=1,第四項(xiàng) T4=C73•8x=280x,第七項(xiàng)  T7=C76•26x2=448x2
點(diǎn)評(píng):本題考查二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,求出n值,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆江蘇省高二下學(xué)期期中考試數(shù)學(xué)理科試卷(解析版) 題型:解答題

已知的展開式中,某一項(xiàng)的系數(shù)是它前一項(xiàng)系數(shù)的2倍,而又等于它后一項(xiàng)系數(shù)的

(Ⅰ)求展開后所有項(xiàng)的系數(shù)之和及所有項(xiàng)的二項(xiàng)式系數(shù)之和;

(Ⅱ)求展開式中的有理項(xiàng).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:重慶市2009-2010學(xué)年度下期期末考試高二數(shù)學(xué)試題(文科) 題型:解答題

 

1.   (本小題滿分12分)

已知的展開式中,某一項(xiàng)的系數(shù)是它前一項(xiàng)系數(shù)的2倍,而等于它后一項(xiàng)的系數(shù)的

(1)  求該展開式中二項(xiàng)式系數(shù)最大的項(xiàng);

(2)  求展開式中系數(shù)最大的項(xiàng).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)學(xué)公式的展開式中,某一項(xiàng)的系數(shù)是它前一項(xiàng)系數(shù)的2倍,而等于它后一項(xiàng)的系數(shù)的數(shù)學(xué)公式
(1)求該展開式中二項(xiàng)式系數(shù)最大的項(xiàng);
(2)求展開式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年江蘇省無錫市高二(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知的展開式中,某一項(xiàng)的系數(shù)恰好是它前一項(xiàng)系數(shù)的2倍,是它后一項(xiàng)系數(shù)的倍,求該展開式中二項(xiàng)式系數(shù)最大的項(xiàng).

查看答案和解析>>

同步練習(xí)冊答案