(本小題滿分12分)
在數(shù)列中,成等差數(shù)列,成等比數(shù)列
(1)求;
(2)猜想的通項公式,并證明你的結(jié)論.

(1)(2)

解析試題分析:(1)由條件得
由此可得………………………………(6分)
(2)猜測
用數(shù)學歸納法證明:
①當時,由上可得結(jié)論成立
②假設當時,結(jié)論成立,即
那么當時,

所以當時,結(jié)論也成立………………………………………………………(11分)
由①②可知,………………………………………………(12分)
對一切正整數(shù)都成立.
考點:歸納推理與數(shù)學歸納法證明不等式
點評:數(shù)學歸納法證明的關(guān)鍵點在于由時命題成立遞推得到時命題成立

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列,a1=1,點在直線上.
(1)求數(shù)列的通項公式;
(2)設,求證:<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設正項數(shù)列都是等差數(shù)列,且公差相等,(1)求的通項公式;(2)若的前三項,記數(shù)列數(shù)列的前n項和為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在數(shù)列中,,且.
(Ⅰ) 求,猜想的表達式,并加以證明;
(Ⅱ) 設,求證:對任意的自然數(shù),都有;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前n項和(n為正整數(shù))。
(Ⅰ)令,求證數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)令,試比較的大小,并予以證明。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列滿足:
(1)求證:;
(2)若,對任意的正整數(shù)恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分16分)
已知有窮數(shù)列共有項(整數(shù)),首項,設該數(shù)列的前項和為,且其中常數(shù)⑴求的通項公式;⑵若,數(shù)列滿足
求證:;
⑶若⑵中數(shù)列滿足不等式:,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,點在函數(shù)的圖象上,其中
(1)證明數(shù)列是等比數(shù)列;
(2)設,求及數(shù)列的通項;
(3)記,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知數(shù)列的前n項和為,且
(Ⅰ)求數(shù)列通項公式;
(Ⅱ)若,求證數(shù)列是等比數(shù)列,并求數(shù)
的前項和

查看答案和解析>>

同步練習冊答案