已知函數(shù)f(x)=x3-ax3+bx+c(a,b,c∈R),若函數(shù)f(x)在x=-1和x=3時取得極值
(1)求a,b
(2)當x∈[-2,6]時,f(x)<2|c|恒成立,求c的取值范圍.

解:(1)∵函數(shù)f(x)在x=-1和x=3時取極值,∴-1,3是方程3x2-2ax+b=0的兩根,
,∴
(2)f(x)=x3-3x2-9x+c,f′(x)=3x2-6x-9,當x變化時,有下表
x(-∞,-1)-1(-1,3)3(3,+∞)
f’(x)+0-0+
f(x)Max
c+5
Min
c-27
而f(-2)=c-2,f(6)=c+54,∴x∈[-2,6]時f(x)的最大值為c+54
要使f(x)<2|c|恒成立,只要c+54<2|c|即可
當c≥0時,c+54<2c,∴c>54,當c<0時,c+54<-2c,∴c<-18
∴c∈(-∞,-18)∪(54,+∞)
分析:(1)先求導函數(shù)f′(x)=3x2-2ax+b,利用函數(shù)f(x)在x=-1和x=3時取得極值,可求a,b;
(2)當x∈[-2,6]時,f(x)<2|c|恒成立,即轉化為f(x)的最小值小于2|c|即可.
點評:本題主要考查利用導數(shù)研究函數(shù)的極值,最值,利用最值解決恒成立問題,要注意常規(guī)方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案