(2010•重慶一模)已知函數(shù)f(x)=x3+lg(x+
x2+1
)
,且x1+x2>0,x2+x3>0,x3+x1>0,則f(x1)+f(x2)+f(x3)的值( 。
分析:先判斷奇偶性和單調(diào)性,先由單調(diào)性定義由自變量的關(guān)系得到函數(shù)關(guān)系,然后三式相加得解.
解答:解:易證f(x)是R上的奇函數(shù)與增函數(shù).
∵x1+x2>0,x2+x3>0,x3+x1>0
∴x1>-x2,x2>-x3,x3>-x1,
∴f(x1)>f(-x2),f(x2)>f(-x3),f(x3)>f(-x1
∴f(x1)+f(x2)>0,f(x2)+f(x3)>0,f(x3)+f(x1)>0,
三式相加得:
f(x1)+f(x2)+f(x3)>0
故選B.
點(diǎn)評(píng):本題主要考查函數(shù)的奇偶性和單調(diào)性的定義,關(guān)鍵是通過(guò)變形轉(zhuǎn)化到定義模型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•重慶一模)已知x,y∈R,則“x•y=0”是“x=0”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•重慶一模)拋物線y=2x2的交點(diǎn)坐標(biāo)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•重慶一模)已知直線l1的方程為3x+4y-7=0,直線l2的方程為6x+8y+1=0,則直線l1與l2的距離為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•重慶一模)設(shè)集合A={(x,y)|x2+y2≤1},集合B={(x,y)|log|x||y|≤log|y||x|,|x|<1,|y|<1},則在直角坐標(biāo)平面內(nèi),A∩B所表示的平面區(qū)域的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•重慶一模)設(shè)函數(shù)f(x)=-x2+2ax+m,g(x)=
ax

(I)若函數(shù)f(x),g(x)在[1,2]上都是減函數(shù),求實(shí)數(shù)a的取值范圍;
(II)當(dāng)a=1時(shí),設(shè)函數(shù)h(x)=f(x)g(x),若h(x)在(0,+∞)內(nèi)的最大值為-4,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案