【題目】設(shè)函數(shù)y= 的定義域?yàn)锳,函數(shù)y=ln(1﹣x)的定義域?yàn)锽,則A∩B=(  )
A.(1,2)
B.(1,2]
C.(﹣2,1)
D.[﹣2,1)

【答案】D
【解析】解:由4﹣x2≥0,解得:﹣2≤x≤2,則函數(shù)y= 的定義域[﹣2,2],
由對(duì)數(shù)函數(shù)的定義域可知:1﹣x>0,解得:x<1,則函數(shù)y=ln(1﹣x)的定義域(﹣∞,1),
則A∩B=[﹣2,1),
故選D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解集合的交集運(yùn)算的相關(guān)知識(shí),掌握交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立,以及對(duì)函數(shù)的定義域及其求法的理解,了解求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若 ,則λ+μ的最大值為( )
A.3
B.2
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若x=﹣2是函數(shù)f(x)=(x2+ax﹣1)ex﹣1的極值點(diǎn),則f(x)的極小值為( )
A.﹣1
B.﹣2e﹣3
C.5e﹣3
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導(dǎo)函數(shù)f′(x)的極值點(diǎn)是f(x)的零點(diǎn).(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值)
(Ⅰ)求b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;
(Ⅱ)證明:b2>3a;
(Ⅲ)若f(x),f′(x)這兩個(gè)函數(shù)的所有極值之和不小于﹣ ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在非零實(shí)數(shù)集上的函數(shù)滿足,且是區(qū)間上的遞增函數(shù).

1)求的值;

2)求證:

3)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知當(dāng)x∈[0,1]時(shí),函數(shù)y=(mx﹣1)2 的圖象與y= +m的圖象有且只有一個(gè)交點(diǎn),則正實(shí)數(shù)m的取值范圍是( 。
A.(0,1]∪[2 ,+∞)
B.(0,1]∪[3,+∞)
C.(0, )∪[2 ,+∞)
D.(0, ]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R上且周期為1的函數(shù),在區(qū)間[0,1)上,f(x)= ,其中集合D={x|x= ,n∈N*},則方程f(x)﹣lgx=0的解的個(gè)數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是一個(gè)算法流程圖,當(dāng)輸入的x=5時(shí),那么運(yùn)行算法流程圖輸出的結(jié)果是(
A.10
B.20
C.25
D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)為二次函數(shù),且f(x-1)+f(x)=2x2+4.

(1)求f(x)的解析式;

(2)當(dāng)x∈[t,t+2],t∈R時(shí),求函數(shù)f(x)的最小值(用t表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案