直線與圓的位置關(guān)系為(  )
A.相交B.相切C.相離D.以上都有可能
A
 因?yàn)橹本方程為所以直線恒過,又因?yàn)?br />,所以點(diǎn)(1,1)在圓上,由于直線不表示與x軸平行的直線,所以直線與圓恒相交。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)已知:圓C:x2+(y-a)2=a2(a>0),動(dòng)點(diǎn)A在x軸上方,圓A與x軸相切,且與圓C外切于點(diǎn)M

(1)若動(dòng)點(diǎn)A的軌跡為曲線E,求曲線E的方程;
(2)動(dòng)點(diǎn)B也在x軸上方,且A,B分別在y軸兩側(cè).圓B與x軸相切,且與圓C外切于點(diǎn)N.若圓A,圓C,圓B的半徑成等比數(shù)列,求證:A,C,B三點(diǎn)共線;
(3)在(2)的條件下,過A,B兩點(diǎn)分別作曲線E的切線,兩切線相交于點(diǎn)T,若的最小值為2,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線>0)的焦點(diǎn)為,準(zhǔn)線為,上一點(diǎn),已知以為圓心,為半徑的圓,兩點(diǎn).
(Ⅰ)若,的面積為,求的值及圓的方程;
(Ⅱ)若,三點(diǎn)在同一條直線上,直線平行,且只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到,距離的比值.
【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點(diǎn)到直線距離公式、線線平行等基礎(chǔ)知識(shí),考查數(shù)形結(jié)合思想和運(yùn)算求解能力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓過點(diǎn),且與圓關(guān)于直線對(duì)稱.
(1)求圓的方程;
(2)設(shè)為圓上一個(gè)動(dòng)點(diǎn),求的最小值;
(3)過點(diǎn)作兩條相異直線分別與圓相交于,且直線直線的傾斜角互補(bǔ),為坐標(biāo)原點(diǎn),試判斷直線是否平行,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分) 在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 它與曲線C:交于A、B兩點(diǎn)。
(1)求|AB|的長(zhǎng)
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為,求點(diǎn)P到線段AB中點(diǎn)M的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)作圓的弦,其中弦長(zhǎng)為整數(shù)的共有( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線:y="k" (x+2)與圓O:相交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),ABO的面積為S.
(1)試將S表示成的函數(shù)S(k),并求出它的定義域;
(2)求S的最大值,并求取得最大值時(shí)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線C:與直線有兩個(gè)交點(diǎn)時(shí),實(shí)數(shù)的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

x2y2+2x+4y-3=0上到直線xy+1=0的距離為的點(diǎn)共有(   )
A.1個(gè)B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案