設(shè)橢圓C1和拋物線C2的焦點均在軸上,C1的中心和C2的頂點均為原點,從每條曲線上各取兩點,將其坐標(biāo)記錄于下表中:


3
-2
4



0
-4

 
(1)求曲線C1,C2的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓C1交于不同兩點M、N,且。請問是否存在直線過拋物線C2的焦點F?若存在,求出直線的方程;若不存在,請說明理由.

(1) ;
(2)存在,

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R).
(1)若l在兩坐標(biāo)軸上截距相等,求l的方程;
(2)若l不經(jīng)過第二象限,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分16分)如圖:為保護河上古橋,規(guī)劃建一座新橋,同時設(shè)立一個圓形保護區(qū),規(guī)劃要求,新橋與河岸垂直;保護區(qū)的邊界為圓心在線段上并與相切的圓,且古橋兩端到該圓上任一點的距離均不少于80,經(jīng)測量,點位于點正北方向60處,點位于點正東方向170處,(為河岸),.

(1)求新橋的長;
(2)當(dāng)多長時,圓形保護區(qū)的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓)過點(2,0),且橢圓C的離心率為
(1)求橢圓的方程;
(2)若動點在直線上,過作直線交橢圓兩點,且為線段中點,再過作直線.求直線是否恒過定點,若果是則求出該定點的坐標(biāo),不是請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求垂直于直線并且與曲線相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C:x2+y2=9,點A(-5,0),直線l:x-2y=0.

(1)求與圓C相切,且與直線l垂直的直線方程;
(2)在直線OA上(O為坐標(biāo)原點),存在定點B(不同于點A),滿足:對于圓C上任一點P,都有為一常數(shù),試求所有滿足條件的點B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)推導(dǎo)點到直線的距離公式;
(2)已知直線互相平行,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

經(jīng)過點的直線l的點方向式方程是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2013•重慶)如圖,橢圓的中心為原點O,長軸在x軸上,離心率,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,|AA′|=4.

(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)取垂直于x軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.若PQ⊥P'Q,求圓Q的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊答案