已知橢圓:()過點(diǎn)(2,0),且橢圓C的離心率為.
(1)求橢圓的方程;
(2)若動(dòng)點(diǎn)在直線上,過作直線交橢圓于兩點(diǎn),且為線段中點(diǎn),再過作直線.求直線是否恒過定點(diǎn),若果是則求出該定點(diǎn)的坐標(biāo),不是請說明理由。
(1);(2)直線恒過定點(diǎn).
解析試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程以及幾何性質(zhì)、直線的標(biāo)準(zhǔn)方程、直線與橢圓的位置關(guān)系、韋達(dá)定理等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問,利用點(diǎn)在橢圓上和離心率得到方程組,解出a和b的值,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問,需要對直線MN的斜率是否存在進(jìn)行討論,(。┤舸嬖邳c(diǎn)P在MN上,設(shè)出直線MN的方程,由于直線MN與橢圓相交,所以兩方程聯(lián)立,得到兩根之和,結(jié)合中點(diǎn)坐標(biāo)公式,得到直線MN的斜率,由于直線MN與直線垂直,從而得到直線的斜率,因?yàn)橹本也過點(diǎn)P,寫出直線的方程,經(jīng)過整理,即可求出定點(diǎn),(ⅱ)若直線MN的斜率不存在,則直線MN即為,而直線為x軸,經(jīng)驗(yàn)證直線,也過上述定點(diǎn),所以綜上所述,有定點(diǎn).
(1)因?yàn)辄c(diǎn)在橢圓上,所以, 所以, 1分
因?yàn)闄E圓的離心率為,所以,即, 2分
解得, 所以橢圓的方程為. 4分
(2)設(shè),,
①當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,,,
由得,
所以, 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/91/c/1wwen4.png" style="vertical-align:middle;" />為中點(diǎn),所以,即.
所以, 8分
因?yàn)橹本,所以,所以直線的方程為,
即 ,顯然直線恒過定點(diǎn). 10分
②當(dāng)直線的斜率不存在時(shí),直線的方程為,此時(shí)直線為軸,也過點(diǎn).
綜上所述直線恒過定點(diǎn). 12分
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程以及幾何性質(zhì)、直線的標(biāo)準(zhǔn)方程、直線與橢圓的位置關(guān)系、韋達(dá)定理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,函數(shù)f(x)=x+的定義域?yàn)?0,+∞).設(shè)點(diǎn)P是函數(shù)圖象上任一點(diǎn),過點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M,N.
(1)證明:|PM|·|PN|為定值;
(2)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l經(jīng)過點(diǎn)P(-2,5),且斜率為
(1)求直線l的方程;
(2)求與直線l切于點(diǎn)(2,2),圓心在直線上的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓C1和拋物線C2的焦點(diǎn)均在軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),從每條曲線上各取兩點(diǎn),將其坐標(biāo)記錄于下表中:
3 | -2 | 4 | ||
0 | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直線L經(jīng)過點(diǎn),且被兩直線L1:和 L2:截得的線段AB中點(diǎn)恰好是點(diǎn)P,求直線L的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中,頂點(diǎn),邊上的中線所在直線的方程是,邊上高所在直線的方程是.
(1)求點(diǎn)、C的坐標(biāo); (2)求的外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R).
(1)若l在兩坐標(biāo)軸上截距相等,求l的方程;
(2)若l不經(jīng)過第二象限,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的頂點(diǎn),過點(diǎn)的內(nèi)角平分線所在直線方程是,過點(diǎn)C的中線所在直線的方程是
(1)求頂點(diǎn)B的坐標(biāo);(2)求直線BC的方程;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com