以橢圓的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的雙曲線方程為   
【答案】分析:先根據(jù)橢圓的標(biāo)準(zhǔn)方程求出橢圓的頂點(diǎn)和焦點(diǎn),從而得到雙曲線的焦點(diǎn)和頂點(diǎn),進(jìn)而得到雙曲線方程.
解答:解:橢圓 的頂點(diǎn)為(-2,0)和(2,0),焦點(diǎn)為(-1,0)和(1,0).
∴雙曲線的焦點(diǎn)坐標(biāo)是(-2,0)和(2,0),頂點(diǎn)為(-1,0)和(1,0).
∴雙曲線的a=1,c=2⇒b=
∴雙曲線方程為
故答案為:
點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程、雙曲線和橢圓的性質(zhì)和應(yīng)用,解題時(shí)要注意區(qū)分雙曲線和橢圓中數(shù)量關(guān)系的區(qū)別.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以橢圓2x2+y2=1的頂點(diǎn)為焦點(diǎn),以橢圓的焦點(diǎn)為頂點(diǎn)的雙曲線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文科)已知橢圓的方程為3x2+y2=18.
(1)求橢圓的焦點(diǎn)坐標(biāo)及離心率;
(2)求以橢圓的焦點(diǎn)為頂點(diǎn)、頂點(diǎn)為焦點(diǎn)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求以橢圓的兩頂點(diǎn)為焦點(diǎn),以橢圓的焦點(diǎn)為頂點(diǎn)的雙曲線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆吉林省高二11月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

以橢圓的焦點(diǎn)為頂點(diǎn)、頂點(diǎn)為焦點(diǎn)的的雙曲線方程是

A.       B.

C.      D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖南省長(zhǎng)沙市高二上學(xué)期期末檢測(cè)數(shù)學(xué)文卷 題型:填空題

以橢圓的焦點(diǎn)為頂點(diǎn),以橢圓的頂點(diǎn)為焦點(diǎn)的雙曲線方程為

                      

 

查看答案和解析>>

同步練習(xí)冊(cè)答案