A. | (-∞,-2]∪(0,2] | B. | (-∞,-2]∪[2,+∞) | C. | (-∞,-2]∪[0,2] | D. | (-∞,-2]∪{0}∪[2,+∞) |
分析 利用函數(shù)是奇函數(shù),然后根據(jù)函數(shù)單調(diào)性的性質(zhì)解不等式即可.
解答 解:∵y=f(x)是奇函數(shù),∴f(0)=0,
∵y=f(x)在(-∞,0)上單調(diào)遞減,且f(2)=0,
∴y=f(x)在(0,+∞)上單調(diào)遞減,且f(-2)=0,
則函數(shù)f(x)對應(yīng)的圖象如圖:
則f(x)≥0的解為0<x≤2或x≤-2或x=0時(shí),f(x)≥0,
故不等式的解集為(-∞,-2]∪{0}∪[2,+∞)
故選:D
點(diǎn)評 本題主要考查函數(shù)奇偶性和單調(diào)性的應(yīng)用,利用函數(shù)取值的變化即可求出不等式的解集,考查函數(shù)性質(zhì)的綜合應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{17}{16}$ | C. | $\frac{1}{4}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{25}+\frac{{9{y^2}}}{100}=1(x≠±5)$ | B. | $\frac{x^2}{25}+\frac{{100{y^2}}}{9}=1(x≠±5)$ | ||
C. | $\frac{x^2}{25}-\frac{{9{y^2}}}{100}=1(y≠0)$ | D. | $\frac{x^2}{25}-\frac{{100{y^2}}}{9}=1(y≠0)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{π}{4}$ | B. | $\frac{π}{4}$ | C. | $-\frac{π}{2}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$) | B. | (-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$) | C. | (-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$) | D. | (-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=at | B. | y=logat | C. | y=at3 | D. | y=a$\sqrt{t}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com