一枚硬幣連擲兩次,出現(xiàn)一次正面的概率為
 
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:列舉出所有結(jié)果,從中可得恰好出現(xiàn)一次正面的結(jié)果數(shù),利用古典概型的概率計算公式可得答案.
解答: 解:將一枚硬幣拋兩次共有4種結(jié)果:正正、正反、反正、反反,
其中恰好出現(xiàn)一次正面的情況有兩種,
所以所求概率為:
2
4
=
1
2
,
故答案為:
1
2
點評:本題考查古典概型的概率計算公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某食品廠為了檢查一條自動包裝流水線的生產(chǎn)情況,隨機(jī)抽取該流水線上的N件產(chǎn)品作為樣本稱出它們的重量(單位;克),重量的分組區(qū)間為(490,495],(495,500],…(510,515],由此得到樣本的頻率分布直方圖,如圖所示,若其中重量超過510克的產(chǎn)品件數(shù)為3.
(1)求N;
(2)在抽取的重量超過505克的產(chǎn)品中任取2件,設(shè)ξ為重量超過510克的產(chǎn)品數(shù)量,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=sinx+sin(x-60°)的周期擴(kuò)大到原來的
1
ω
(0<ω<1)倍,所得函數(shù)圖象關(guān)于直線x=2π對稱,則ω的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系x0y中,以0為原點,x軸正半軸為極軸建立坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos(θ-
π
3
)=1,M、N分別為C與x軸、y軸的交點.MN的中點為P,則直線OP的極坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1-x
x
+ln2x在x=
 
處取得極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且a1=1,Sn=an+1-1,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入x=10,則輸出y的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C所對的邊,
①若A=60°,b=2,c=3,則a=
7
;
②若C=60°,b=
6
,c=3則A=75°;
③b2+c2<a2,則A為鈍角;
④若acosA=bcosB,則△ABC是等腰三角形;
⑤若
cosC
c
=
cosB
b
+
cosA
a
,則
ab
c2
的最大值為
3
2
,
在這五個命題中真命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面表示同一集合的是(  )
A、M={(1,2)},N={(2,1)}
B、M={1,2},N={(1,2)}
C、M=∅,N={∅}
D、M={x|x2-2x+1=0},N={1}

查看答案和解析>>

同步練習(xí)冊答案