已知一個球的球心O到過球面上A、B、C三點的截面的距離等于此球半徑的一半,若AB=BC=CA=3,則球的體積為   
【答案】分析:由AB=BC=CA=2,求得△ABC的外接圓半徑為r,再由4r2=r2+(32-)×求得球的半徑,再用體積公式求解.
解答:解:設球的半徑為2r,那么4r2=r2+(32-)×
r=1
球的半徑是:2
則球的體積為
故答案為:
點評:本題主要考查球的球面面積,涉及到截面圓圓心與球心的連垂直于截面,這是求得相關量的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•上海模擬)已知一個球的球心O到過球面上A、B、C三點的截面的距離等于此球半徑的一半,若AB=BC=CA=3,則球的體積為
32
3
π
32
3
π

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:填空題

已知一個球的球心O到過球面上A、B、C三點的截面的距離等于此球半徑的一半,若AB=BC=CA=3,則球的體積為______.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年廣東省汕頭市金山中學高一(上)期末數(shù)學試卷(解析版) 題型:填空題

已知一個球的球心O到過球面上A、B、C三點的截面的距離等于此球半徑的一半,若AB=BC=CA=3,則球的體積為   

查看答案和解析>>

科目:高中數(shù)學 來源:2012年浙江省高考數(shù)學沖刺試卷10(理科)(解析版) 題型:解答題

已知一個球的球心O到過球面上A、B、C三點的截面的距離等于此球半徑的一半,若AB=BC=CA=3,則球的體積為   

查看答案和解析>>

同步練習冊答案