19.已知函數(shù)f(x)=|x-a|+|x-2a|.
(Ⅰ)對任意x∈R,不等式f(x)>1成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=-1時(shí),解不等式f(x)<3.

分析 (Ⅰ)f(x)=|x-a|+|x-2a|≥|(x-a)-(x-2a)|=|a|,且f(x)>1對任意x∈R成立,可得|a|>1,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=-1時(shí),分類討論,解不等式f(x)<3.

解答 解:(Ⅰ)∵f(x)=|x-a|+|x-2a|≥|(x-a)-(x-2a)|=|a|,且f(x)>1對任意x∈R成立,
∴|a|>1,
∴a>1或a<-1.…(5分)
(Ⅱ)a=-1時(shí),f(x)=|x+1|+|x+2|<3,
x≥-1,2x+3<3,
∴x<0,
∴-1≤x<0;
-2<x<-1,-x-1+x+2<3,恒成立;
x≤-2,-x-1-x-2<3,
∴x>-3,
∴-3<x≤-2
∴f(x)<3的解集為(-3,0).…(10分)

點(diǎn)評 對于含有絕對值的題目,本身就是分類的,問題的提出已包含了分類的原因.分類討論是一種邏輯方法,是一種重要的數(shù)學(xué)思想,同時(shí)也是一種重要的解題策略,它體現(xiàn)了化整為零、積零為整的思想與歸類整理的方法,在高考試題中占有重要的位置.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若數(shù)列{an}為各項(xiàng)都是正數(shù)的等比數(shù)列,且a2=2-$\sqrt{2}$,a7=2a3+a5,則數(shù)列{an}的前10項(xiàng)和S10=(  )
A.15$\sqrt{2}$B.15C.31$\sqrt{2}$D.31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.給定正整數(shù)k≥2,若從正方體ABCD-A1B1C1D1的8個(gè)頂點(diǎn)中任取k個(gè)頂點(diǎn),組成一個(gè)集合M={X1,X2,…,Xk},均滿足?Xi,Xj∈M,?Xl,Xt∈M,使得直線XiXj⊥XlXt,則k的所有可能取值是5,6,7,8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=log${\;}_{\frac{1}{2}}}$($\sqrt{{x^2}+1}$+bx),則下列說法正確的是( 。
A.若函數(shù)f(x)是定義在R上的偶函數(shù),則b=±1
B.若函數(shù)f(x)是定義在R上的奇函數(shù),則b=1
C.若b=-1,則函數(shù)f(x)是定義在R上的增函數(shù)
D.若b=-1,則函數(shù)f(x)是定義在R上的減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={0,1,2},B={2,3},則集合C={z|z=x-y,x∈A,y∈B}中所有元素之和為(  )
A.-9B.-8C.-7D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一名小學(xué)生的年齡和身高(單位:cm)的數(shù)據(jù)如下表:
年齡x6789
身高y118126136144
由散點(diǎn)圖可知,身高y與年齡x之間的線性回歸方程為$\stackrel{∧}{y}$=8.8$\stackrel{∧}{x}$+a,則a的值為( 。
A.65B.74C.56D.47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.計(jì)算:$\frac{1}{2}$${∫}_{1}^{e}$xlnxdx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若sinxcosy+cosxsiny=$\frac{1}{2}$,cos2x-cos2y=$\frac{2}{3}$,則sin(x-y)=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.閱讀如圖所示的程序框圖,則輸出S的值為22.

查看答案和解析>>

同步練習(xí)冊答案