【題目】在數(shù)列中,,其中.
(1)若依次成公差不為0的等差數(shù)列,求m;
(2)證明:“”是“恒成立”的充要條件;
(3)若,求證:存在,使得.
【答案】(1);(2)證明略;(3)證明略。
【解析】
(1)由得出,再因為 依次成公差不為0的等差數(shù)列,可得,可求得的值;
(2)由,得出,再由,可得,由此可證充分性;再 對恒成立,可得對恒成立,可得出可證其必要性,可得證;
(3)由,
,將上述不等式相加得 ,可取正整數(shù),可得證.
(1)由得,,,,
因為依次成公差不為0的等差數(shù)列,所以,
即,解得(舍去),經(jīng)檢驗,此時的公差不為,
所以;
(2)因為,因為,所以,因為,所以,
所以“”是“”恒成立的充分條件;
因為,,所以對恒成立,即對恒成立,
而,所以,要使對恒成立,則需,
所以“”是“”恒成立的必要條件,
所以“”是“恒成立”的充要條件.
(3)因為,又因為
所以令,
,
將上述不等式相加得 ,所以 ,
取正整數(shù),有 ,
所以當,存在,使得.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且,對任意實數(shù),成立.
(1)求函數(shù)的解析式;
(2)若,解關于的不等式;
(3)求最大的使得存在,只需,就有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某快遞公司在某市的貨物轉運中心,擬引進智能機器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購買x臺機器人的總成本為萬元.
(1)若使每臺機器人的平均成本最低,問應買多少臺?
(2)現(xiàn)按(1)中的數(shù)量購買機器人,需要安排m人將郵件放在機器人上,機器人將郵件送達指定落袋格口完成分揀(如圖).經(jīng)實驗知,每臺機器人的日平均分揀量為,(單位:件).已知傳統(tǒng)的人工分揀每人每日的平均分揀量為1200件,問引進機器人后,日平均分揀量達最大時,用人數(shù)量比引進機器人前的用人數(shù)量最多可減少百分之幾?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的前項和為,若,則稱是“數(shù)列”.
(1)若是“數(shù)列”,且,,,,求的取值范圍;
(2)若是等差數(shù)列,首項為,公差為,且,判斷是否為“數(shù)列”;
(3)設數(shù)列是等比數(shù)列,公比為,若數(shù)列與都是“數(shù)列”,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某創(chuàng)業(yè)投資公司擬開發(fā)某種新能源產(chǎn)品,估計能獲得萬元到萬元的投資利益,現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎金不超過萬元,同時獎金不超過收益的.
()請分析函數(shù)是否符合公司要求的獎勵函數(shù)模型,并說明原因.
()若該公司采用函數(shù)模型作為獎勵函數(shù)模型,試確定最小正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓M:的左頂點為、中心為,若橢圓M過點,且 .
(1)求橢圓M的方程;
(2)若△APQ的頂點Q也在橢圓M上,試求△APQ面積的最大值;
(3)過點作兩條斜率分別為的直線交橢圓M于兩點,且,求證:直線恒過一個定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),函數(shù)的圖象與的圖象關于對稱.
(1)若關于的方程在上有解,求實數(shù)的取值范圍;
(2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓為其左右焦點,為其上下頂點,四邊形的面積為.點為橢圓上任意一點,以為圓心的圓(記為圓)總經(jīng)過坐標原點.
(1)求橢圓的長軸的最小值,并確定此時橢圓的方程;
(2)對于(1)中確定的橢圓,若給定圓,則圓和圓的公共弦的長是否為定值?如果是,求的值;如果不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com