【題目】已知數(shù)列滿(mǎn)足,且.
(1)當(dāng)時(shí),寫(xiě)出的通項(xiàng)公式(直接寫(xiě)出答案,無(wú)需過(guò)程);
(2)求最小整數(shù),使得當(dāng)時(shí), 是單調(diào)遞增數(shù)列;
(3)是否存在使得是等比數(shù)列?若存在請(qǐng)求出;若不存在請(qǐng)說(shuō)明理由.
【答案】(1);(2)見(jiàn)解析;(3)見(jiàn)解析.
【解析】試題分析:(1)寫(xiě)出幾項(xiàng),歸納即得,(2)先計(jì)算歸納可得當(dāng)時(shí), 是單調(diào)遞增數(shù)列.再根據(jù)數(shù)學(xué)歸納法給以證明,(3)根據(jù)計(jì)算可得時(shí), 不是等比數(shù)列.再證時(shí) , 也不是等比數(shù)列.
試題解析:(1)
(2)當(dāng)時(shí), ,,,不單調(diào)遞增;
當(dāng)時(shí),由(1)知不單調(diào)遞增;
當(dāng)時(shí), ,,,不單調(diào)遞增;
當(dāng)時(shí), ,,,
當(dāng)時(shí), ,,,
由此猜測(cè)當(dāng)時(shí), 是單調(diào)遞增數(shù)列.
下面用數(shù)學(xué)歸納法證明一個(gè)更強(qiáng)得猜想:當(dāng)時(shí),
當(dāng)時(shí),猜想成立;
假設(shè)當(dāng)時(shí),猜想成立,即,
當(dāng)時(shí),因?yàn)?/span>,所以,
即時(shí),猜想扔成立.
由,及數(shù)學(xué)歸納法知,當(dāng)時(shí), ,
此時(shí)因?yàn)?/span>,所以,所以,
由此當(dāng)時(shí), 是單調(diào)遞增數(shù)列.
(3)由(2)知, 時(shí), 不是等比數(shù)列.
當(dāng)時(shí), ,因此,
可求出通項(xiàng)公式為,所以不存在使得是等比數(shù)列
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)A(﹣2,1),B(5,0)兩點(diǎn),且圓心C在直線(xiàn)y=2x上.
(1)求圓C的方程;
(2)動(dòng)直線(xiàn)l:(m+2)x+(2m+1)y﹣7m﹣8=0過(guò)定點(diǎn)M,斜率為1的直線(xiàn)m過(guò)點(diǎn)M,直線(xiàn)m和圓C相交于P,Q兩點(diǎn),求PQ的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】輪船A從某港口O將一些物品送到正航行的輪船B上,在輪船A出發(fā)時(shí),輪船B位于港口O北偏西30°且與O相距20海里的P處,并正以30海里/小時(shí)的航速沿正東方向勻速行駛,假設(shè)輪船A沿直線(xiàn)方向以V海里/小時(shí)的航速勻速行駛,經(jīng)過(guò)t小時(shí)與輪船B相遇.
(1)若使相遇時(shí)輪船A航距最短,則輪船A的航行速度大小應(yīng)為多少?
(2)假設(shè)輪船A的最高航行速度只能達(dá)到30海里/小時(shí),則輪船A以多大速度及什么航行方向才能在最短時(shí)間與輪船B相遇,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用長(zhǎng)為18 m的鋼條圍成一個(gè)長(zhǎng)方體形狀的框架,要求長(zhǎng)方體的長(zhǎng)與寬之比為2:1,問(wèn)該長(zhǎng)方體的長(zhǎng)、寬、高各為多少時(shí),其體積最大?最大體積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿(mǎn)足: , .
()求, , 的值.
()求證:數(shù)列是等比數(shù)列.
()令,如果對(duì)任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)y=x2-6x+1與軸交于點(diǎn),與軸交于, 兩點(diǎn).
(1)求△的面積;
(2)求△外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省2016年高中數(shù)學(xué)學(xué)業(yè)水平測(cè)試的原始成績(jī)采用百分制,發(fā)布成績(jī)使用等級(jí)制.各等級(jí)劃分標(biāo)準(zhǔn)如下:85分及以上,記為A等;分?jǐn)?shù)在[70,85)內(nèi),記為B等;分?jǐn)?shù)在[60,70)內(nèi),記為C等;60分以下,記為D等.同時(shí)認(rèn)定A,B,C為合格,D為不合格.已知某學(xué)校學(xué)生的原始成績(jī)均分布在[50,100]內(nèi),為了了解該校學(xué)生的成績(jī),抽取了50名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出樣本頻率分布直方圖如圖所示.
(Ⅰ)求圖中x的值,并根據(jù)樣本數(shù)據(jù)估計(jì)該校學(xué)生學(xué)業(yè)水平測(cè)試的合格率;
(Ⅱ)在選取的樣本中,從70分以下的學(xué)生中隨機(jī)抽取3名學(xué)生進(jìn)行調(diào)研,用X表示所抽取的3名學(xué)生中成績(jī)?yōu)镈等級(jí)的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)O和點(diǎn)F2(﹣ ,0)分別為雙曲線(xiàn) =1(a>0)的中心和左焦點(diǎn),點(diǎn)P為雙曲線(xiàn)右支上的任意一點(diǎn),則 的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù) 的單調(diào)區(qū)間和極值;
(2)是否存在實(shí)數(shù) ,使得函數(shù) 在 上的最小值為 ?若存在,求出 的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com