【題目】在平面直角坐標(biāo)系xOy中,曲線y=x2-6x+1與軸交于點(diǎn),與軸交于, 兩點(diǎn).
(1)求△的面積;
(2)求△外接圓的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD是圓的兩條平行弦,BE∥AC,BE交CD于E、交圓于F,過A點(diǎn)的切線交DC的延長線于P,PC=ED=1,PA=2.
(1)求AC的長;
(2)試比較BE與EF的長度關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不經(jīng)過坐標(biāo)原點(diǎn)的直線與圓交于不同的兩點(diǎn).若直線的斜率與直線和斜率滿足,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,且.
(1)當(dāng)時(shí),寫出的通項(xiàng)公式(直接寫出答案,無需過程);
(2)求最小整數(shù),使得當(dāng)時(shí), 是單調(diào)遞增數(shù)列;
(3)是否存在使得是等比數(shù)列?若存在請求出;若不存在請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)O和點(diǎn)F2(﹣ ,0)分別為雙曲線 =1(a>0)的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的任意一點(diǎn),則 的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在2015﹣2016賽季CBA聯(lián)賽中,某隊(duì)甲、乙兩名球員在前10場比賽中投籃命中情況統(tǒng)計(jì)如下表(注:表中分?jǐn)?shù) ,N表示投籃次數(shù),n表示命中次數(shù)),假設(shè)各場比賽相互獨(dú)立.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
甲 | ||||||||||
乙 |
根據(jù)統(tǒng)計(jì)表的信息:
(1)從上述比賽中等可能隨機(jī)選擇一場,求甲球員在該場比賽中投籃命中率大于0.5的概率;
(2)試估計(jì)甲、乙兩名運(yùn)動員在下一場比賽中恰有一人命中率超過0.5的概率;
(3)在接下來的3場比賽中,用X表示這3場比賽中乙球員命中率超過0.5的場次,試寫出X的分布列,并求X的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形∠CAB=90°,AC=2a,E,F(xiàn)分別為AC,BC的中點(diǎn),沿EF將△CEF折起,得到如圖2所示的四棱錐C′﹣ABFE
(1)求證:AB⊥平面AEC′;
(2)當(dāng)四棱錐C′﹣ABFE體積取最大值時(shí),
①若G為BC′中點(diǎn),求異面直線GF與AC′所成角;
②在C′﹣ABFE中AE交BF于C,求二面角A﹣CC′﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某種設(shè)備的使用年限 (年)與所支出的維修費(fèi)用 (萬元)有如下統(tǒng)計(jì)資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
已知, .
,
(1)求, ;
(2) 與具有線性相關(guān)關(guān)系,求出線性回歸方程;
(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com