18.已知函數(shù)f(x)=lnx-a•sin(x-1),其中a∈R.
(Ⅰ)如果曲線y=f(x)在x=1處的切線的斜率是-1,求a的值;
(Ⅱ)如果f(x)在區(qū)間(0,1)上為增函數(shù),求a的取值范圍.

分析 (Ⅰ)求出函數(shù)的導數(shù),根據(jù)切線的斜率求出f′(1)=-1,求出a的值即可;
(Ⅱ)求出f(x)的導數(shù),解關于導函數(shù)的不等式,得到g(x)<g(1)=1,求出a的范圍即可.

解答 解:(Ⅰ)函數(shù)f(x)的定義域是(0,+∞),[(1分)]
導函數(shù)為$f'(x)=\frac{1}{x}-a•cos(x-1)$.[(2分)]
因為曲線y=f(x)在x=1處的切線的斜率是-1,
所以f'(1)=-1,即1-a=-1,[(3分)]
所以a=2.[(4分)]
(Ⅱ)因為f(x)在區(qū)間(0,1)上為增函數(shù),
所以對任意x∈(0,1),都有$f'(x)=\frac{1}{x}-a•cos(x-1)≥0$.[(6分)]
因為x∈(0,1)時,cos(x-1)>0,
所以$f'(x)=\frac{1}{x}-a•cos(x-1)≥0?a≤\frac{1}{x•cos(x-1)}$.[(8分)]
令g(x)=x•cos(x-1),所以g'(x)=cos(x-1)-x•sin(x-1).[(10分)]
因為x∈(0,1)時,sin(x-1)<0,
所以x∈(0,1)時,g'(x)>0,g(x)在區(qū)間(0,1)上單調遞增,
所以g(x)<g(1)=1.[(12分)]
所以a≤1.
即a的取值范圍是(-∞,1].[(13分)]

點評 本題考查了函數(shù)的單調性、最值問題,考查導數(shù)的應用,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.設集合U=R,集合$A=\left\{{x\left|{{{log}_2}x<1}\right.}\right\},B=\left\{{x\left|{{x^2}-2x-3≤0}\right.}\right\}$,則(∁UA)∩B=( 。
A.[2,3]B.[-1,2]C.[-1,0]D.[-1,0]∪[2,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在△ABC中,角A,B,C所對的邊分別為a,b,c,若A,B,C成等差數(shù)列,2a,2b,2c成等比數(shù)列,則sinAcosBsinC=(  )
A.$\frac{1}{4}$B.$\frac{\sqrt{3}}{4}$C.$\frac{3}{8}$D.$\frac{\sqrt{3}}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知等比數(shù)列{an}的公比為q,且q≠1,a1=2,3a1,2a2,a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{bn}是一個首項為-6,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.實數(shù)x,y滿足$\left\{\begin{array}{l}x≤3\\ x+y≥0\\ x-y+6≥0.\end{array}\right.$若z=ax+y的最大值為3a+9,最小值為3a-3,則a的取值范圍是( 。
A.[-1,0]B.[0,1]C.[-1,1]D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設$\overrightarrow{a}$,$\overrightarrow$是非零向量,且$\overrightarrow{a}$≠±$\overrightarrow$.則“|$\overrightarrow{a}$|=|$\overrightarrow$|”是“($\overrightarrow{a}+\overrightarrow$)⊥($\overrightarrow{a}-\overrightarrow$)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.對于函數(shù)f(x),若存在實數(shù)x0滿足f(x0)=x0,則稱x0為函數(shù)f(x)的一個不動點.已知函數(shù)f(x)=x3+ax2+bx+3,其中a,b∈R
(Ⅰ)當a=0時,
(ⅰ)求f(x)的極值點;
(ⅱ)若存在x0既是f(x)的極值點,又是f(x)的不動點,求b的值;
(Ⅱ)若f(x)有兩個相異的極值點x1,x2,試問:是否存在a,b,使得x1,x2 均為f(x)的不動點?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某小區(qū)停車場的收費標準為:每車每次停車時間不超過2小時免費,超過2小時的部分每小時收費1元(不足1小時的部分按1小時計算).現(xiàn)有甲乙兩人獨立來停車場停車(各停車一次),且兩人停車時間均不超過5小時.設甲、乙兩人停車時間(小時)與取車概率如表所示.
  (0,2] (2,3] (3,4] (4,5]
 甲 $\frac{1}{2}$ x x x
 乙 $\frac{1}{6}$ $\frac{1}{3}$ y 0
(1)求甲、乙兩人所付車費相同的概率;
(2)設甲、乙兩人所付停車費之和為隨機變量ξ,求ξ的分布列和數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在△ABC中,若BC=2,A=60°,則$\overrightarrow{AB}$•$\overrightarrow{CA}$有(  )
A.最大值-2B.最小值-2C.最大值2$\sqrt{3}$D.最小值2$\sqrt{3}$

查看答案和解析>>

同步練習冊答案