3.設(shè)$\overrightarrow{a}$,$\overrightarrow$是非零向量,且$\overrightarrow{a}$≠±$\overrightarrow$.則“|$\overrightarrow{a}$|=|$\overrightarrow$|”是“($\overrightarrow{a}+\overrightarrow$)⊥($\overrightarrow{a}-\overrightarrow$)”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)向量數(shù)量積的應(yīng)用以及充分條件和必要條件的定義進行判斷.

解答 解:若“($\overrightarrow{a}+\overrightarrow$)⊥($\overrightarrow{a}-\overrightarrow$)”,則“($\overrightarrow{a}+\overrightarrow$)•($\overrightarrow{a}-\overrightarrow$)=0,即“|$\overrightarrow{a}$|2=|$\overrightarrow$|2”,即|$\overrightarrow{a}$|=|$\overrightarrow$|,
反之當|$\overrightarrow{a}$|=|$\overrightarrow$|,則($\overrightarrow{a}+\overrightarrow$)•($\overrightarrow{a}-\overrightarrow$)=|$\overrightarrow{a}$|2-|$\overrightarrow$|2=0,即($\overrightarrow{a}+\overrightarrow$)⊥($\overrightarrow{a}-\overrightarrow$),
故“|$\overrightarrow{a}$|=|$\overrightarrow$|”是“($\overrightarrow{a}+\overrightarrow$)⊥($\overrightarrow{a}-\overrightarrow$)”的充要條件,
故選:C

點評 本題主要考查充分條件和必要條件的判斷,根據(jù)向量垂直與向量數(shù)量積的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.給出定義:設(shè)f'(x)是函數(shù)y=f(x)的導(dǎo)函數(shù),f''(x)是函數(shù)f'(x)的導(dǎo)函數(shù),若f''(x)=0方程有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)f(x)的“拐點”.已知函數(shù)f(x)=2x+sinx-cosx的拐點是M(x0,f(x0)),則直線OM的斜率為(  )
A.2B.$\frac{1}{2}$C.1D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{dn}的前n項和${S_n}={n^2}+n$,且d2,d4為等比數(shù)列數(shù)列{an}的第2、3項.
(1)求{an}的通項方式;
(2)設(shè)${b_n}=\frac{n}{a_n}$,求證:b1+b2+…+bn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}+(2a-1)x(a∈R)$.
(Ⅰ)若f(x)在點(0,0)處的切線方程為y=x,求a的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)當a=-1時,設(shè)f(x)在x1,x2(x1<x2)處取到極值,記M(x1,f(x1)).A(0,f(0)),B(1,f(1)),C(2,f(2)),判斷直線AM、BM、CM與函數(shù)f(x)的圖象各有幾個交點(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=lnx-a•sin(x-1),其中a∈R.
(Ⅰ)如果曲線y=f(x)在x=1處的切線的斜率是-1,求a的值;
(Ⅱ)如果f(x)在區(qū)間(0,1)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,角A,B,C的對邊分別為a,b,c.若c=3,C=$\frac{π}{3}$,sinB=2sinA,則a=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)公比不為1的等比數(shù)列{an}滿足${a_1}{a_2}{a_3}=-\frac{1}{8}$,且a2,a4,a3成等差數(shù)列,則數(shù)列{an}的前4項和為$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=sin(2x+φ)的圖象向右平移$\frac{π}{3}$個單位,與函數(shù)y=sin2x的圖象重合,φ∈(-π,π),則φ=( 。
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.-$\frac{5π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.計算:(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-log327=-$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊答案