橢圓
x2
36
+
y2
20
=1的離心率e是( 。
分析:由于橢圓
x2
36
+
y2
20
=1的a2=36,b2=20,從而得到a=6,c2=16,繼而可得到
c
a
的值.
解答:解:由于橢圓的方程為
x2
36
+
y2
20
=1,
故a2=36,b2=20,
從而得到a=6,c2=16,
即c=4,
∴e=
c
a
=
4
6
=
2
3

故選:D.
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)點(diǎn)A、B分別是橢圓
x2
36
+
y2
20
=1長軸的左、右焦點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn).點(diǎn)P在橢圓上,且位于x軸上方,PA⊥PF.
(1)求P點(diǎn)的坐標(biāo);
(2)設(shè)M是橢圓長軸AB上的一點(diǎn),M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)A、B分別是橢圓
x2
36
+
y2
20
=1
長軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于x軸上方,PA⊥PF.求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A,B分別是橢圓
x2
36
+
y2
20
=1
的長軸的左右端點(diǎn),點(diǎn)F為橢圓的右焦點(diǎn),直線PF的方程為:
3
x+y-4
3
=0
且PA⊥PF.
(1)求直線AP的方程;
(2)設(shè)點(diǎn)M是橢圓長軸AB上一點(diǎn),點(diǎn)M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A、B分別是橢圓
x2
36
+
y2
20
=1
的長軸的左、右端點(diǎn),F(xiàn)為橢圓的右焦點(diǎn),直線PF的方程為
3
x+y-3
2
=0
,且PA⊥PF.
(Ⅰ)求直線PA的方程;
(Ⅱ)設(shè)M是橢圓長軸AB上的一點(diǎn),M到直線AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案