(本小題共12分)
已知函數(shù)f(x)=2x--aln(x+1),a∈R.(1)若a=-4,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求y=f(x)的極值點(diǎn)(即函數(shù)取到極值時(shí)點(diǎn)的橫坐標(biāo)).
(1)f(x)的單調(diào)增區(qū)間為(-1,3), 單調(diào)減區(qū)間為(3,+∞)。
(2)
ⅰ.7分
ⅱ.當(dāng)時(shí),若,由函數(shù)的單調(diào)性可知f(x)有極小值點(diǎn);有極大值點(diǎn)。若時(shí),f(x)有極大值點(diǎn),無(wú)極小值點(diǎn)。
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題13分)已知函數(shù)
(1)在右圖給定的直角坐標(biāo)系內(nèi)畫(huà)出的圖象;
(2)寫(xiě)出的單調(diào)遞增區(qū)間.
(3) 求的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某公司生產(chǎn)一種產(chǎn)品的固定成本是10000元,每生產(chǎn)一件產(chǎn)品需要另外投入80元,又知市場(chǎng)對(duì)這種產(chǎn)品的年需求量為800件,且銷(xiāo)售收入函數(shù),其中t是產(chǎn)品售出的數(shù)量,且(利潤(rùn)=銷(xiāo)售收入成本).
(1)若x為年產(chǎn)量,y表示利潤(rùn),求的解析式;
(2)當(dāng)年產(chǎn)量為多少時(shí),求工廠(chǎng)年利潤(rùn)的最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)
某工廠(chǎng)去年的某產(chǎn)品的年銷(xiāo)售量為100萬(wàn)只,每只產(chǎn)品的銷(xiāo)售價(jià)為10元,每只產(chǎn)品固定成本為8元.今年,工廠(chǎng)第一次投入100萬(wàn)元(科技成本),并計(jì)劃以后每年比上一年多投入100萬(wàn)元(科技成本),預(yù)計(jì)銷(xiāo)售量從今年開(kāi)始每年比上一年增加10萬(wàn)只,第n次投入后,每只產(chǎn)品的固定成本為(且n≥0),若產(chǎn)品銷(xiāo)售價(jià)保持不變,第n次投入后的年利潤(rùn)為萬(wàn)元.
(Ⅰ)求出的表達(dá)式;
(Ⅱ)若今年是第1年,問(wèn)第幾年年利潤(rùn)最高?最高利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x+2ax+2, x.
(1)當(dāng)a=-1時(shí),求函數(shù)的最大值和最小值;
(2) 若y=f(x)在區(qū)間 上是單調(diào) 函數(shù),求實(shí)數(shù) a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某服裝廠(chǎng)生產(chǎn)一種服裝,每件服裝的成本為40元,出廠(chǎng)單價(jià)定為60元,該廠(chǎng)為鼓勵(lì)銷(xiāo)售商訂購(gòu),決定當(dāng)一次訂購(gòu)量超過(guò)100件時(shí),每多訂購(gòu)一件,訂購(gòu)的全部服裝的出場(chǎng)單價(jià)就降低0.02元,根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售商一次訂購(gòu)量不會(huì)超過(guò)600件.
(1)設(shè)一次訂購(gòu)x件,服裝的實(shí)際出廠(chǎng)單價(jià)為p元,寫(xiě)出函數(shù)p=f(x)的表達(dá)式;
(2)當(dāng)銷(xiāo)售商一次訂購(gòu)多少件服裝時(shí),該廠(chǎng)獲得的利潤(rùn)最大?其最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
為了保護(hù)水資源,提倡節(jié)約用水,某市對(duì)居民生活用水收費(fèi)標(biāo)準(zhǔn)如下:每戶(hù)每月用水不超過(guò)6噸時(shí)每噸3元,當(dāng)用水超過(guò)6噸但不超過(guò)15噸時(shí),超過(guò)部分每噸5元,當(dāng)用水超過(guò)15噸時(shí),超過(guò)部分每噸10元。
(1)求水費(fèi)y(元)關(guān)于用水量x(噸)之間的函數(shù)關(guān)系式;
(2)若某戶(hù)居民某月所交水費(fèi)為93元,試求此用戶(hù)該月的用水量。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分14分)某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿(mǎn)足函數(shù): ,其中是儀器的月產(chǎn)量。
(1)將利潤(rùn)表示為月產(chǎn)量的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少元?
(利潤(rùn)總收益總成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)有甲、乙兩種商品,經(jīng)營(yíng)銷(xiāo)售這兩種商品所能獲得的利潤(rùn)依次是P和Q(萬(wàn)元),它們與投入資金x(萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式:P=x,Q=.今有3萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,為獲得最大利潤(rùn),對(duì)甲、乙兩種商品的資金投入分別應(yīng)為多少,能獲得的最大利潤(rùn)為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com