為了保護水資源,提倡節(jié)約用水,某市對居民生活用水收費標準如下:每戶每月用水不超過6噸時每噸3元,當用水超過6噸但不超過15噸時,超過部分每噸5元,當用水超過15噸時,超過部分每噸10元。
(1)求水費y(元)關于用水量x(噸)之間的函數(shù)關系式;
(2)若某戶居民某月所交水費為93元,試求此用戶該月的用水量。

(1)(2)18噸

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)=logax,g(x)=2loga(2xt-2)(a>0,a≠1,t∈R).
(1)當t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2時,求a的值;
(2)當0<a<1,x∈[1,2]時,有f(x)≥g(x)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題共12分)
已知函數(shù)f(x)=2x--aln(x+1),a∈R.(1)若a=-4,求函數(shù)f(x)的單調區(qū)間;
(2)求y=f(x)的極值點(即函數(shù)取到極值時點的橫坐標).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本大題13分)設、為函數(shù) 圖象上不同的兩個點,
且 AB∥軸,又有定點 ,已知是線段的中點.

⑴ 設點的橫坐標為,寫出的面積關于的函數(shù)的表達式;
⑵ 求函數(shù)的最大值,并求此時點的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

有一邊長為的正方形鐵片,鐵片的四角截去四個邊長為的小正方形,然后做成一個無蓋方盒。

(1)試把方盒的容積表示成的函數(shù);
(2)求多大時,做成方盒的容積最大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
⑴若的定義域和值域均是,求實數(shù)的值;
⑵若上是減函數(shù),且對任意的,總有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某廠家擬在2010年舉行促銷活動,經(jīng)調查測算,該產品的年銷售量(即該廠的年產量)萬件與促銷費用萬元()滿足為常數(shù)),如果不搞促銷活動,則該產品的年銷量只能是1萬件。已知2010年生產該產品的固定投入為8萬元,每生產1萬件該產品需要再投入16萬元,廠家將每件產品的銷售價格定為每件產品的年平均成本的1.5倍(產品成本包括固定投入和再投入兩部分資金)。
(1)將2010年該產品的利潤y萬元表示為年促銷費用m萬元的函數(shù);
(2)該廠家2010年的促銷費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)某新型智能在線電池的電量(單位:kwh)隨時間(單位:小時)的變化規(guī)律是:,其中是智能芯片實時控制的參數(shù)。
(1)當時,求經(jīng)過多少時間電池電量是 kwh;
(2)如果電池的電量始終不低于2 kwh,求參數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是邊長為2的正三角形,記位于直線左側的圖形的面積為,試求函數(shù)的解析式.

查看答案和解析>>

同步練習冊答案