分析 (1)連結(jié)AC1交A1C于點(diǎn)G,連結(jié)DG.推導(dǎo)出DG∥BC1,由此能證明BC1∥平面A1DC.
(2)過點(diǎn)D作DE⊥AC于E,過點(diǎn)D作DF⊥A1C交A1C于F,連結(jié)EF,推導(dǎo)出∠DFE是二面角D-A1C-A的平面角.由此能求出二面角D-A1C-A的平面角的正弦值.
解答 證明:(1)連結(jié)AC1交A1C于點(diǎn)G,連結(jié)DG.
在正三棱柱ABC-A1B1C1中,四邊形ACC1A1是平行四邊形,
∴AG=GC1.
∵AD=DB,
∴DG∥BC1.…(2分)
∵DG?平面A1DC,BC1?平面A1DC,
∴BC1∥平面A1DC.…(4分)
解:(2)過點(diǎn)D作DE⊥AC于E,
過點(diǎn)D作DF⊥A1C交A1C于F,連結(jié)EF,
∵平面ABC⊥平面ACC1A1,DE?平面ABC,
平面ABC∩平面ACC1A1=AC,
∴DE⊥平面ACC1A1,
∴EF是DF在平面ACC1A1內(nèi)的射影,
∴EF⊥A1C
∴∠DFE是二面角D-A1C-A的平面角.
在直角三角形ADC中,$DE=\frac{AD•DC}{AC}=\frac{{\sqrt{3}}}{4}$.
同理可求:$DF=\frac{{{A_1}D•DC}}{{{A_1}C}}=\frac{{\sqrt{39}}}{8}$.
∴$sinDFE=\frac{DE}{DF}=\frac{{2\sqrt{13}}}{13}$.…(12分)
點(diǎn)評(píng) 本題考查線面平行的證明,考查二面角的平面角的正弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | 7 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 如果平面α⊥γ,β⊥γ,α∩β=l,那么l⊥γ | |
B. | 如果平面α⊥β,那么平面α 中一定存在直線平行于平面β | |
C. | 如果平面 α不垂直于平面β,那么平面α 內(nèi)一定不存在直線垂直于平面β | |
D. | 如果平面α⊥β,那么平面 α內(nèi)所有直線都垂直于平面β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{2\sqrt{3}}}{5}$ | B. | $\frac{{2\sqrt{3}}}{5}$ | C. | $\frac{{4\sqrt{3}-3}}{10}$ | D. | $\frac{{4\sqrt{3}+3}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\sqrt{3}$ | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥2 | B. | a≤2 | C. | a>2 | D. | a<2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com