【題目】在平面直角坐標(biāo)系xOy中曲線 經(jīng)伸縮變換 后得到曲線C2 , 在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C3的極坐標(biāo)方程為 .
(1)求曲線C2的參數(shù)方程和C3的直角坐標(biāo)方程;
(2)設(shè)M為曲線C2上的一點(diǎn),又M向曲線C3引切線,切點(diǎn)為N,求|MN|的最大值.
【答案】
(1)解:將 代入C1得 ,所以C2的參數(shù)方程為 (φ為參數(shù)).
由 得r2﹣6rsinq=8,∴C3的直角坐標(biāo)方程為x2+(y﹣3)2=1
(2)解:C3表示以C3(0,3)為圓心,以1為半徑的圓, .
設(shè)M(2cosφ,sinφ),
則 = = = .
∵﹣1≤sinφ≤1,∴|MC3|max=4.
根據(jù)題意可得
【解析】(1)將 代入C1得 ,利用平方關(guān)系可得C2的參數(shù)方程.由 得r2﹣6rsinq=8,利用互化公式可得C3的直角坐標(biāo)方程.(2)C3表示以C3(0,3)為圓心,以1為半徑的圓, .設(shè)M(2cosφ,sinφ),利用兩點(diǎn)之間的距離公式與三角函數(shù)的單調(diào)性可得,|MC3|max .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),B(0,2),C(cosα,sinα).
(1)若 ,且α∈(0,π),求角α的值;
(2)若 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( )
A. 命題“若x2-4x+3=0,則x=3”的逆否命題是:“若x≠3,則x2-4x+3≠0”
B. “x>1”是“|x|>0”的充分不必要條件
C. 若p且q為假命題,則p、q均為假命題
D. 命題p:“x0∈R使得+x0+1<0”,則p:“x∈R,均有x2+x+1≥0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是( 。
A. 2017年第一季度總量和增速由高到低排位均居同一位的省只有1個(gè)
B. 與去年同期相比,2017年第一季度五個(gè)省的總量均實(shí)現(xiàn)了增長(zhǎng)
C. 去年同期河南省的總量不超過4000億元
D. 2017年第一季度增速由高到低排位第5的是浙江省
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論錯(cuò)誤的是 ( )
A. 若“且”與“或”均為假命題,則真假.
B. 命題“存在”的否定是“對(duì)任意”
C. “”是“”的充分不必要條件.
D. “若則a<b”的逆命題為真.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于定義域?yàn)镈的函數(shù)y=f(x),如果存在區(qū)間[m,n]D,其中m<n,同時(shí)滿足:①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);②當(dāng)定義域是[m,n]時(shí),f(x)的值域也是[m,n]. 則稱函數(shù)f(x)是區(qū)間[m,n]上的“保值函數(shù)”,區(qū)間[m,n]稱為“保值區(qū)間”.
(1)求證:函數(shù)g(x)=x2﹣2x不是定義域[0,1]上的“保值函數(shù)”.
(2)若函數(shù)f(x)=2+ ﹣ (a∈R,a≠0)是區(qū)間[m,n]上的“保值函數(shù)”,求a的取值范圍.
(3)對(duì)(2)中函數(shù)f(x),若不等式|a2f(x)|≤2x對(duì)x≥1恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求實(shí)數(shù)m的最大值;
(2)當(dāng)a< 時(shí),函數(shù)g(x)=f(x)+|2x﹣1|有零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識(shí)測(cè)試.
(Ⅰ)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為環(huán)保知識(shí)成績(jī)優(yōu)秀與學(xué)生的文理分類有關(guān).
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計(jì) | |
甲班 | |||
乙班 | 30 | ||
總計(jì) | 60 |
(Ⅱ)現(xiàn)已知A,B,C三人獲得優(yōu)秀的概率分別為 ,設(shè)隨機(jī)變量X表示A,B,C三人中獲得優(yōu)秀的人數(shù),求X的分布列及期望E(X).
附: ,n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com