【題目】同時擲兩個骰子,計算:
(1)一共有多少種不同的結(jié)果?
(2)其中向上的點數(shù)之和是5的結(jié)果有多少種?
(3)向上的點數(shù)之和是5的概率是多少?
【答案】(1)如解析所示;(2)
【解析】【試題分析】(1)先將同時投擲兩個骰子的點數(shù)全部列舉出來;(2)列舉出來點數(shù)之和是5的所有可能結(jié)果(1,4),(2,3)(3,2)(4,1),共四種;(3)依據(jù)題設(shè)中要求“向上的點數(shù)之和是5”,運用古典概型的計算公式求出滿足題設(shè)條件的事件的概率為。
解:(1)
1點 | 2點 | 3點 | 4點 | 5點 | 6點 | |
1點 | (1,1) | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) |
2點 | (2,1) | (2,2) | (2,3) | (2,4) | (2,5) | (2,6) |
3點 | (3,1) | (3,2) | (3,3) | (3,4) | (3,5) | (3,6) |
4點 | (4,1) | (4,2) | (4,3) | (4,4) | (4,5) | (4,6) |
5點 | (5,1) | (5,2) | (5,3) | (5,4) | (5,5) | (5,6) |
6點 | (6,1) | (6,2) | (6,3) | (6,4) | (6,5) | (6,6) |
擲一個骰子的結(jié)果有6種。我們把兩個標上記號1、2以便區(qū)分,由于1號骰子 的每一個結(jié)果都可與2號骰子的任意一個結(jié)果配對,組成同時擲兩個骰子的一個結(jié)果,因此同時擲兩個骰子的結(jié)果共有36種。
(2)在上面的所有結(jié)果中,向上的點數(shù)之和為5的結(jié)果有(1,4),(2,3)(3,2)(4,1)
其中第一個數(shù)表示1號骰子的結(jié)果,第二個數(shù)表示2號骰子的結(jié)果。
由于所有36種結(jié)果是等可能的,其中向上點數(shù)之和為5的結(jié)果(記為事件A)有4種,因此,由古典概型的概率計算公式可得
科目:高中數(shù)學 來源: 題型:
【題目】某省兩相近重要城市之間人員交流頻繁,為了緩解交通壓力,特修一條專用鐵路,用一列火車作為交通車,已知該車每次拖4節(jié)車廂,一日能來回16次,如果每次拖7節(jié)車廂,則每日能來回10次.
(1)若每日來回的次數(shù)是車頭每次拖掛車廂節(jié)數(shù)的一次函數(shù),求此一次函數(shù)解析式:
(2)在(1)的條件下,每節(jié)車廂能載乘客110人.問這列火車每天來回多少次才能使運營人數(shù)最多?并求出每天最多運營人數(shù)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別為的中點,且.
(1)求證:平面平面;
(2)求證:平面平面;
(3)求三棱錐與四棱錐的體積之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)f(x)是R上的偶函數(shù),且在[0,+∞)上單調(diào)遞增,則f(-2),f(3),f(-)的大小順序是:( )
A. f(-)>f(3)>f(-2) B. f(-) >f(-2)>f(3)
C. f(-2)>f(3)> f(-) D. f(3)>f(-2)> f(-)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)關(guān)于θ的方程cosθ+sinθ+a=0在區(qū)間(0,2π)內(nèi)有相異的兩個實根α、β.
(1)求實數(shù)a的取值范圍;
(2)求α+β的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)y=的單調(diào)遞減區(qū)間是_____________.
(2)y=的遞增區(qū)間是____________________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+a2.
(I)若f(x)在x=1處有極值10,求a,b的值;
(II)若當a=-1時,f(x)<0在x∈[1,2]恒成立,求b的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中裝有偶數(shù)個球,其中紅球、黑球各占一半,甲、乙、丙是三個空盒.每次從袋中任取兩個球,將其中一個球放入甲盒,如果這個球是紅球,就將另一個球放入乙盒,否則就放入丙盒.重復上述過程,直到袋中所有球都放入盒中,則( )
A. 乙盒中紅球與丙盒中黑球一樣多
B. 乙盒中黑球不多于丙盒中黑球
C. 乙盒中紅球不多于丙盒中紅球
D. 乙盒中黑球與丙盒中紅球一樣多
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直線與反比例函數(shù)的圖象交于B、C兩點,B(2,m)且m<2,正方形ABCD的頂點A、D在坐標軸上。
⑴ 求, 的值;
⑵ 直接寫出時, 的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com