已知函數(shù),()
(1)若函數(shù)存在極值點,求實數(shù)b的取值范圍;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當且時,令,(),()為曲線y=上的兩動點,O為坐標原點,能否使得是以O(shè)為直角頂點的直角三角形,且斜邊中點在y軸上?請說明理由
(1);(2)當時,,函數(shù)的單調(diào)遞增區(qū)間為;
當時,,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(3)對任意給定的正實數(shù),曲線上總存在兩點,滿足條件.
解析試題分析:(1)求,要函數(shù)由極值,也就是有實數(shù)解,由于是關(guān)于的二次函數(shù),則由便求得的取值范圍;(2)求,需要對實數(shù)進行分類討論,或,在這兩種情況下分別求出函數(shù)的單調(diào)區(qū)間,注意分類討論問題,應弄清對哪個字母分類討論,分類應不重不漏;(3)是探索性問題,要說明存在是以O(shè)為直角頂點的直角三角形,
且斜邊中點在y軸上,需要證明,該方程有解,要對進行分類討論分別說明.
試題解析:(1),若存在極值點,
則有兩個不相等實數(shù)根.
所以,解得 .
(2),
當時,,函數(shù)的單調(diào)遞增區(qū)間為;
當時,,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
當且時,
假設(shè)使得是以O(shè)為直角頂點的直角三角形,且斜邊中點在y軸上.
則且.
不妨設(shè).故,則.
,該方程有解,
當時,,代入方程得,
即,而此方程無實數(shù)解;
當時,則;
當時,,代入方程得,即,
設(shè),則在上恒成立.
∴在上單調(diào)遞增,從而,則值域為.
∴當時,方程有解,即方程有解.
綜上所述,對任意給定的正實數(shù),曲線上總存在兩點,使得是以O(shè)為直角頂點的直角三角形,且斜邊中點在y軸上.
考點:導數(shù)的計算,函數(shù)的極值,構(gòu)造法.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,(其中),設(shè).
(Ⅰ)當時,試將表示成的函數(shù),并探究函數(shù)是否有極值;
(Ⅱ)當時,若存在,使成立,試求的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知兩點、,點為坐標平面內(nèi)的動點,滿足.
(1)求動點的軌跡方程;
(2)若點是動點的軌跡上的一點,是軸上的一動點,試討論直線與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù),.
(1)當時,函數(shù)取得極值,求的值;
(2)當時,求函數(shù)在區(qū)間[1,2]上的最大值;
(3)當時,關(guān)于的方程有唯一實數(shù)解,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)若,試確定函數(shù)的單調(diào)區(qū)間;
(2)若且對任意,恒成立,試確定實數(shù)的取值范圍;
(3)設(shè)函數(shù),求證:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com