【題目】在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求橢圓的極坐標(biāo)方程和直線的直角坐標(biāo)方程;

(2)若點的極坐標(biāo)為,直線與橢圓相交于,兩點,求的值.

【答案】(1);(2)

【解析】

(1)由橢圓的參數(shù)方程消參數(shù)可得橢圓的普通方程,再將代入橢圓的普通方程即可求得橢圓的極坐標(biāo)方程,由即可將直線的極坐標(biāo)方程化為直角坐標(biāo)方程,問題得解。

(2)求出點的直角坐標(biāo)為,即可設(shè)直線的參數(shù)方程為,聯(lián)立橢圓方程與直線參數(shù)方程,可得:,,結(jié)合直線參數(shù)方程中參數(shù)的幾何意義可得 ,問題得解。

(1)橢圓的普通方程為,

代入整理得:

橢圓的極坐標(biāo)方程為,

得直線的直角坐標(biāo)方程為:

(2)設(shè)點,對應(yīng)的參數(shù)分別為,

的直角坐標(biāo)為:,它在直線上.

設(shè)直線的參數(shù)方程為為參數(shù)),

代入,得,

化簡得,所以,

由直線參數(shù)方程的幾何意義可得:

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的方程為,為橢圓的左右頂點,為橢圓上不同于.的動點,直線與直線,分別交于兩點,若,則過,三點的圓必過軸上不同于點的定點,其坐標(biāo)為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形為直角梯形,,四邊形為矩形,平面平面,,點的中點,點的中點.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面邊長都相等,A1在底面ABC內(nèi)的射影為△ABC的中心,則AC1與底面ABC所成角的余弦值等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在直角梯形中,的中點,四邊形為正方形,將沿折起,使點到達(dá)點,如圖(2),的中點,且,點為線段上的一點.

1)證明:

2)當(dāng)夾角最小時,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年9月,臺風(fēng)“山竹”在我國多個省市登陸,造成直接經(jīng)濟(jì)損失達(dá)52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風(fēng)中造成的直接經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成五組:,,,(單位:元),得到如圖所示的頻率分布直方圖.

(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

(2)臺風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機(jī)抽取2戶進(jìn)行重點幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

1)求方程的實數(shù)根;

2)設(shè),均為正整數(shù),且為最簡根式,若存在,使得可唯一表示為的形式,試求橢圓的焦點坐標(biāo);

3)已知,是否存在,使得成立,若存在,試求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中

①若空間向量,,則的充要條件;

②若的必要不充分條件,則實數(shù)的取值范圍為

③已知,為兩個不同平面,為兩條直線,,,,則的充要條件;

④已知向量為平面的法向量,為直線的方向向量,則的充要條件.

其中正確命題的序號有(

A.②③B.②④C.②③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】條件

1)條件:復(fù)數(shù),指明的說明條件?若滿足條件,記,求

2)若上問中,記時的在平面直角坐標(biāo)系的點存在過點的拋物線頂點在原點,對稱軸為坐標(biāo)軸,求拋物線的解析式。

3)自(2)中點出發(fā)的一束光線經(jīng)拋物線上一點反射后沿平行于拋物線對稱軸方向射出,求:

查看答案和解析>>

同步練習(xí)冊答案