分析 (1)由f(2x)≤4求出不等式的解集,即可求出a的值,
(2)不等式轉化為|x-4|+|x+m-4|≥2在R上恒成立,再根據(jù)絕對值三角不等式,解得即可.
解答 解:(1)f(2x)≤4?|2x-a|≤4?-4≤2x-a≤4?$\left\{\begin{array}{l}2x-a≥-4\\ 2x-a≤4\end{array}\right.$?$\frac{a-4}{2}≤x≤\frac{a+4}{2}$,
根據(jù)題意:$\left\{\begin{array}{l}a-4=0\\ a+4=8\end{array}\right.$.
∴a=4;
(2)f(x)+f(x+m)<2的解集為空集,
∴|x-4|+|x+m-4|<2的解集為空集,
∴|x-4|+|x+m-4|≥2在R上恒成立,
又|x-4|+|x+m-4|≥|(x-4)-(x+m-4)|=|m|
∴|m|≥2,
∴m≥2或m≤-2
點評 本小題主要考查含有絕對值號的不等式等基礎知識,考查推理論證能力,考查化歸與轉化思想.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{4}$ | B. | -$\frac{8}{9}$ | C. | 8 | D. | -8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第6項 | B. | 第7項 | C. | 第8項 | D. | 第9項 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com