(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點O為極點x軸的正半軸為極軸建立極坐標(biāo)系, 曲線C1的極坐標(biāo)方程為:
(I)求曲線C1的普通方程;
(II)曲線C2的方程為,設(shè)P、Q分別為曲線C1與曲線C2上的任意一點,求|PQ|的最小值.
(Ⅰ) (Ⅱ) .
解析試題分析:(Ⅰ)原式可化為,…………2分
即……………4分
(Ⅱ)依題意可設(shè)由(Ⅰ)知圓C圓心坐標(biāo)(2,0)。
,……………6分
,…………8分
所以.…………10分
考點:本題主要考查極坐標(biāo)方程與普通方程的互化,參數(shù)方程的應(yīng)用。
點評:中檔題,學(xué)習(xí)參數(shù)方程、極坐標(biāo),其中一項基本的要求是幾種不同形式方程的互化,其次是應(yīng)用極坐標(biāo)、參數(shù)方程,簡化解題過程。參數(shù)方程的應(yīng)用,往往可以把曲線問題轉(zhuǎn)化成三角問題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在直角坐標(biāo)系中,曲線的參數(shù)方程為(為非零常數(shù),為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,直線的方程為.
(Ⅰ)求曲線的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實數(shù),使得直線與曲線有兩個不同的公共點,且(其中為坐標(biāo)原點)?若存在,請求出;否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,以O(shè)為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為,曲線的參數(shù)方程為,(為參數(shù),)。
(Ⅰ)求C1的直角坐標(biāo)方程;
(Ⅱ)當(dāng)C1與C2有兩個公共點時,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),在以為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點對應(yīng)的參數(shù),射線與曲線交于點.
(I)求曲線,的方程;
(II)若點,在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以坐標(biāo)原點為極點,橫軸的正半軸為極軸的極坐標(biāo)系下,有曲線C:,過極點的直線
(且是參數(shù))交曲線C于兩點0,A,令OA的中點為M.
(1)求點M在此極坐標(biāo)下的軌跡方程(極坐標(biāo)形式).
(2)當(dāng)時,求M點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)的極點在平面直角坐標(biāo)系的原點處,極軸與軸的正半軸重合,且長度單位相同.圓的參數(shù)方程為(為參數(shù)),點的極坐標(biāo)為. (1)化圓的參數(shù)方程為極坐標(biāo)方程;
(2)若點是圓上的任意一點, 求,兩點間距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
((本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點是直角坐標(biāo)系的原點,極軸與直角坐標(biāo)系中軸的正半軸重合.曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程是.
(Ⅰ)求曲線和的直角坐標(biāo)方程并畫出草圖;
(Ⅱ)設(shè)曲線和相交于,兩點,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com