20.若tana=$\frac{1}{4}$,則tan($\frac{π}{4}$+α)=$\frac{5}{3}$.

分析 把已知數(shù)據(jù)代人兩角和的正切公式,計算可得.

解答 解:∵tana=$\frac{1}{4}$,∴tan($\frac{π}{4}$+α)
=$\frac{tan\frac{π}{4}+tanα}{1-tan\frac{π}{4}tanα}$=$\frac{1+\frac{1}{4}}{1-1×\frac{1}{4}}$=$\frac{5}{3}$,
故答案為:$\frac{5}{3}$.

點評 本題考查兩角和與差的正切函數(shù),屬基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知復數(shù)z=i(1-i),則|z|=( 。
A.2B.$\sqrt{2}$C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知等比數(shù)列{an}滿足an+1+an=10•4n-1(n∈N*),數(shù)列{bn}的前n項和為Sn,且bn=log2an
(I)求bn,Sn;
(Ⅱ)設cn=$\frac{_{n}+1}{2}$,證明:$\sqrt{{c}_{1}•{c}_{2}}$+${\sqrt{{c}_{2•}c}}_{3}$+…+${\sqrt{{c}_{n}•c}}_{n+1}$<$\frac{1}{2}$Sn+1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知x,lga,lgb,y成等差數(shù)列,a>1,b>1,且a+b=20,則x+y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=2,$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,點D在∠CAB內(nèi),且∠DAB=30°,設$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ,μ∈R),則$\frac{λ}{μ}$等于( 。
A.3B.$\frac{\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在△ABC中,sinA:sinB:sinC=1:1:$\sqrt{2}$,且△ABC的面積為$\frac{1}{2}$,則$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$的值是-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若$\frac{-{i}^{2013}}{a+bi}$=$\frac{5}{i-2}$(a,b∈R).則以a,b為根的一元二次方程為25x2-15x+2=0..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-2{x}^{2},x<0}\\{-tanx,0≤x<\frac{π}{2}}\end{array}\right.$,則f(f($\frac{π}{4}$))等于( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.a(chǎn)-b+1>0是a>|b|的( 。
A.充分不必要條件B.充要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案