【題目】已知Sn為等差數(shù)列{an}的前n項(xiàng)和,S6=51,a5=13.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}的通項(xiàng)公式是bn= , 求數(shù)列{bn}的前n項(xiàng)和Sn

【答案】【解答】(1)設(shè)等差數(shù)列{an}的公差為d,則
∵S6=51,
×(a1+a6)=51,
∴a1+a6=17,
∴a2+a5=17,
∵a5=13,∴a2=4,
∴d=3,
∴an=a2+3(n﹣2)=3n﹣2;
(2)bn==﹣28n﹣1
∴數(shù)列{bn}的前n項(xiàng)和Sn=(8n﹣1).
【解析】(1)設(shè)等差數(shù)列{an}的公差為d,利用S6=51,求出a1+a6=17,可得a2+a5=17,從而求出a2=4,可得公差,即可確定數(shù)列{an}的通項(xiàng)公式;
(2)求出數(shù)列{bn}的通項(xiàng)公式,利用等比數(shù)列的求和公式,可得結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等比數(shù)列的前n項(xiàng)和公式的相關(guān)知識(shí),掌握前項(xiàng)和公式:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算機(jī)在數(shù)據(jù)處理時(shí)使用的是二進(jìn)制,例如十進(jìn)制的1、2、3、4在二進(jìn)制分別表示為1、10、11、100.下面是某同學(xué)設(shè)計(jì)的將二進(jìn)制數(shù)11111化為十進(jìn)制數(shù)的一個(gè)流程圖,則判斷框內(nèi)應(yīng)填入的條件是(
A.i>4
B.i≤4
C.i>5
D.i≤5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an},等比數(shù)列{bn}滿足:a1b1=1,a2b2,2a3b3=1.

(1)求數(shù)列{an},{bn}的通項(xiàng)公式;

(2)cnanbn,求數(shù)列{cn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2(lga2)xlgb,f(1)=2,當(dāng)x∈R時(shí)f(x)≥2x恒成立,求實(shí)數(shù)a的值,并求此時(shí)f(x)的最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=|x2-4x+3|.

(1)作出函數(shù)f(x)的圖象;

(2)求函數(shù)f(x)的單調(diào)區(qū)間,并指出其單調(diào)性;

(3)求集合M={m|使方程f(x)=m有四個(gè)不相等的實(shí)根}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=logax(a>0,a≠1),設(shè)數(shù)列f(a1),f(a2),f(a3),…,f(an)…是首項(xiàng)為4,公差為2的等差數(shù)列.
(I)設(shè)a為常數(shù),求證:{an}成等比數(shù)列;
(II)設(shè)bn=anf(an),數(shù)列{bn}前n項(xiàng)和是Sn , 當(dāng)時(shí),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

⑴若函數(shù)的圖象經(jīng)過點(diǎn),求實(shí)數(shù)的值.

⑵當(dāng)時(shí),函數(shù)的最小值為1,求當(dāng)時(shí),函數(shù)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) fx)是定義在 R上的偶函數(shù),當(dāng) x≥0 時(shí),fx)=x2+ax+b 的部分圖象如圖所示:

1)求 fx)的解析式;

2)在網(wǎng)格上將 fx)的圖象補(bǔ)充完整,并根據(jù) fx)圖象寫出不等式 fx≥1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面AA1B1B⊥底面ABC,△ABC和△ABB1都是邊長(zhǎng)為2的正三角形.
(Ⅰ)過B1作出三棱柱的截面,使截面垂直于AB,并證明;
(Ⅱ)求AC1與平面BCC1B1所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案