已知數(shù)列{an}的通項(xiàng)為an,前n項(xiàng)和為sn,且an是sn與2的等差中項(xiàng),數(shù)列{bn}中,b1=1,點(diǎn)P(bn,bn+1)在直線x-y+2=0上.
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式an,bn
(Ⅱ)設(shè){bn}的前n項(xiàng)和為Bn,試比較與2的大。
(Ⅲ)設(shè)Tn=,若對一切正整數(shù)n,Tn<c(c∈Z)恒成立,求c的最小值.
【答案】分析:(Ⅰ)利用已知條件得出數(shù)列的通項(xiàng)和前n項(xiàng)和之間的等式關(guān)系,再結(jié)合二者間的基本關(guān)系,得出數(shù)列{an}的通項(xiàng)公式,根據(jù){bn}的相鄰兩項(xiàng)滿足的關(guān)系得出遞推關(guān)系,進(jìn)一步求出其通項(xiàng)公式;
(Ⅱ)利用放縮法轉(zhuǎn)化各項(xiàng)是解決該問題的關(guān)鍵,將所求的各項(xiàng)放縮轉(zhuǎn)化為能求和的一個數(shù)列的各項(xiàng)估計其和,進(jìn)而達(dá)到比較大小的目的;
(Ⅲ)利用錯位相減法進(jìn)行求解Tn是解決本題的關(guān)鍵,然后對相應(yīng)的和式進(jìn)行估計加以解決.
解答:解:(Ⅰ)由題意可得2an=sn+2,
當(dāng)n=1時,a1=2,
當(dāng)n≥2時,有2an-1=sn-1+2,兩式相減,整理得an=2an-1即數(shù)列{an}是以2為首項(xiàng),2為公比的等比數(shù)列,故an=2n
點(diǎn)P(bn,bn+1)在直線x-y+2=0上得出bn-bn+1+2=0,即bn+1-bn=2,
即數(shù)列{bn}是以1為首項(xiàng),2為公差的等差數(shù)列,
因此bn=2n-1.
(Ⅱ)Bn=1+3+5+…+(2n-1)=n2

=
(Ⅲ)Tn=

①-②得


∴滿足條件Tn<c的最小值整數(shù)c=3.
點(diǎn)評:本題考查等差數(shù)列,等比數(shù)列的判定問題,考查根據(jù)數(shù)列的遞推關(guān)系得出數(shù)列通項(xiàng)公式的方法,考查數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系,考查數(shù)列求和的思想和方法,考查放縮法估計不等式的有關(guān)問題,考查學(xué)生分析問題解決問題的能力和意識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)為an=2n-1,Sn為數(shù)列{an}的前n項(xiàng)和,令bn=
1
Sn+n
,則數(shù)列{bn}的前n項(xiàng)和的取值范圍為( 。
A、[
1
2
,1)
B、(
1
2
,1)
C、[
1
2
,
3
4
)
D、[
2
3
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式是an=
an
bn+1
,其中a、b均為正常數(shù),那么數(shù)列{an}的單調(diào)性為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•東城區(qū)二模)已知數(shù)列{an}的通項(xiàng)公式是 an=
na
(n+1)b
,其中a、b均為正常數(shù),那么 an與 an+1的大小關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=2n-5,則|a1|+|a2|+…+|a10|=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=
1
n+1
+
n
求它的前n項(xiàng)的和.

查看答案和解析>>

同步練習(xí)冊答案