【題目】設(shè)函數(shù)

1)求函數(shù)上的最小值點(diǎn);

2)若,求證:是函數(shù)時(shí)單調(diào)遞增的充分不必要條件.

【答案】1時(shí),最小值點(diǎn)為,時(shí),最小值點(diǎn)為,當(dāng)時(shí),最小值點(diǎn)為.(2)見(jiàn)解析.

【解析】

1)求出導(dǎo)函數(shù),研究函數(shù)的單調(diào)性,確定函數(shù)在上單調(diào)性得最值.

2)求出數(shù)時(shí)單調(diào)遞增時(shí)的的取值范圍后可得結(jié)論.

1,由,

當(dāng)時(shí),,遞減,時(shí),,遞增,

當(dāng),即時(shí),遞增,的最小值點(diǎn)為,

,即時(shí),的極小值點(diǎn)也是最小值點(diǎn)為,

,即時(shí),遞減,的最小值點(diǎn)為

綜上,時(shí),最小值點(diǎn)為,時(shí),最小值點(diǎn)為,當(dāng)時(shí),最小值點(diǎn)為

2)由已知,

由題意上恒成立,即上恒成立,

設(shè),,

設(shè),當(dāng)時(shí),,遞增,,∴,上遞減,

,∴時(shí),,∴

∴:是函數(shù)時(shí)單調(diào)遞增的充分不必要條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|+|x+2|.

(1)當(dāng)a=1 時(shí),求不等式f(x)≤5的解集;

(2)x0∈R,f(x0)≤|2a+1|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),其中.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.

1)求的直角坐標(biāo)方程;

2)已知點(diǎn)交于點(diǎn),與交于兩點(diǎn),且,求的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4—5:不等式選講]

已知函數(shù)

(1)當(dāng)時(shí),求不等式的解集;

(2)若不等式的解集包含,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1),求的單調(diào)區(qū)間;

(2)若當(dāng)時(shí)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若曲線的一條切線方程為,

(i)求的值;

(ii)若時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)已知為自然對(duì)數(shù)的底數(shù),求函數(shù)處的切線方程;

(2)當(dāng)時(shí),方程有唯一實(shí)數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn),拋物線Cy2=8x上一點(diǎn)A到焦點(diǎn)F的距離為6,若點(diǎn)P為拋物線C準(zhǔn)線上的動(dòng)點(diǎn),則|OP|+|AP|的最小值為( 。

A. 4B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列敘述正確的是(

A.命題pq為真,則恰有一個(gè)為真命題

B.命題已知,則的充分不必要條件

C.命題都有,則,使得

D.如果函數(shù)在區(qū)間上是連續(xù)不斷的一條曲線,并且有,那么函數(shù)在區(qū)間內(nèi)有零點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案