設(shè)f(x)=
1
3x+
3
,則f(-11)+f(-10)+f(-9)+f(10)+f(11)+f(12)=
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)條件證明f(x)+f(1-x)為定值,即可得到結(jié)論.
解答: 解:∵f(x)=
1
3x+
3

∴f(x)+f(1-x)=
1
3x+
3
+
1
31-x+
3
=
1
3x+
3
+
3x
3+
3
3x
=
3x+
3
3
(
3
+3x)
=
1
3
=
3
3

∴f(x)+f(1-x)=
3
3
,
∴f(-11)+f(-10)+f(-9)+f(10)+f(11)+f(12)=3[f(-9)+f(10)]=3×
3
3
=
3

故答案為:
3
點(diǎn)評(píng):本題主要考查函數(shù)值的計(jì)算,利用條件證明f(x)+f(1-x)=
3
3
是解決本題的關(guān)鍵.考查學(xué)生的觀察和推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},若A∩B={0},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=sin(ωx-
π
3
)•cos(ωx-
π
3
)的周期為2,且ω>0,則ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

滿足A∪B={a,b}的A、B不同情形的組數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(x,y)是滿足
x+4y≥4
x-2y>-2
x≤4
的區(qū)域內(nèi)的動(dòng)點(diǎn),則
y+2
x+1
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
x2+
3x4y2
+
y2+
3x2y4
=a
,且x,y,a均為正數(shù),求證:x
2
3
+y
2
3
=a
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)(x∈R)為偶函數(shù),且f(x-
3
2
)=f(x+
1
2
)恒成立,當(dāng)x∈[2,3]時(shí),f(x)=x,則當(dāng)x∈[-2,0]時(shí),f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是等差數(shù)列,a2=2,a5=8,則公差d的值為( 。
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=x(
1
3x-1
+
1
2
),證明其在定義域上恒大于0.

查看答案和解析>>

同步練習(xí)冊(cè)答案