【題目】設(shè)函數(shù), , .
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)有兩個(gè)零點(diǎn),試求的取值范圍;
(3)證明.
【答案】(1)(2)(3)見解析
【解析】試題分析:
(1)求出導(dǎo)數(shù),計(jì)算得切線斜率,由點(diǎn)斜式寫出直線方程,整理成一般式即可;
(2)函數(shù)有兩個(gè)零點(diǎn),首先用導(dǎo)數(shù)來研究函數(shù)的性質(zhì):?jiǎn)握{(diào)性、極值,然后由零點(diǎn)存在定理進(jìn)行判斷,求出,按分類討論, 時(shí), 只有一個(gè)零點(diǎn); 時(shí), ,這樣易判斷的正負(fù),從而得的單調(diào)區(qū)間和極值,由零點(diǎn)存在定理可判斷符合題意;在時(shí), 有兩個(gè)解和,又要按的大小分類研究的正負(fù)得的單調(diào)性,從而確定零點(diǎn)個(gè)數(shù),最后綜合可得;
(3)證明函數(shù)不等式,可證,設(shè),利用導(dǎo)數(shù)求出的最大值,只要最大值小于等于0,即證.
試題解析:
(1)函數(shù)的定義域是, .
當(dāng)時(shí), , .
所以函數(shù)在點(diǎn)處的切線方程為.
即.
(2)函數(shù)的定義域?yàn)?/span>,由已知得.
①當(dāng)時(shí),函數(shù)只有一個(gè)零點(diǎn);
②當(dāng),因?yàn)?/span>,
當(dāng)時(shí), ;當(dāng)時(shí), .
所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
又, ,
因?yàn)?/span>,所以, 所以,所以
取,顯然且
所以, .
由零點(diǎn)存在性定理及函數(shù)的單調(diào)性知,函數(shù)有兩個(gè)零點(diǎn).
③當(dāng)時(shí),由,得,或.
當(dāng),則.
當(dāng)變化時(shí), , 變化情況如下表:
注意到,所以函數(shù)至多有一個(gè)零點(diǎn),不符合題意.
當(dāng),則, 在單調(diào)遞增,函數(shù)至多有一個(gè)零點(diǎn),不符合題意.
若,則.
當(dāng)變化時(shí), , 變化情況如下表:
注意到當(dāng), 時(shí), , ,所以函數(shù)至多有一個(gè)零點(diǎn),不符合題意.
綜上, 的取值范圍是.
(3)證明: .
設(shè),其定義域?yàn)?/span>,則證明即可.
因?yàn)?/span>,取,則,且.
又因?yàn)?/span>,所以函數(shù)在上單增.
所以有唯一的實(shí)根,且.
當(dāng)時(shí), ;當(dāng)時(shí), .
所以函數(shù)的最小值為.
所以.
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(為常數(shù)),為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)時(shí),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),求使得成立的最小正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.]
(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;
(2)試估計(jì)該公司投入萬元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 (單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益 (單位:萬元) | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為, 為的中點(diǎn), 為線段上的動(dòng)點(diǎn),過點(diǎn), , 的平面截該正方體所得的截面為,則下列命題正確的是__________(寫出所有正確命題的編號(hào)).
①當(dāng)時(shí), 為四邊形;②當(dāng)時(shí), 為等腰梯形;
③當(dāng)時(shí), 與的交點(diǎn)滿足;
④當(dāng)時(shí), 為五邊形;
⑤當(dāng)時(shí), 的面積為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于、兩點(diǎn),以為對(duì)角線作正方形,記直線與軸的交點(diǎn)為,問、兩點(diǎn)間距離是否為定值?如果是,求出定值;如果不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的參數(shù)方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=a﹣bcos(2x+ )(b>0)的最大值為3,最小值為﹣1.
(1)求a,b的值;
(2)當(dāng)求x∈[ , π]時(shí),函數(shù)g(x)=4asin(bx﹣ )的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓及點(diǎn).
(1)在圓上,求線段的長(zhǎng)及直線的斜率;
(2)若為圓上任一點(diǎn),求的最大值和最小值;
(3)若實(shí)數(shù)滿足,求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種藥種植基地有兩處種植區(qū)的藥材需在下周一、周二兩天內(nèi)采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘,由于下雨會(huì)影響藥材的收益,若基地收益如下表所示:已知下周一和下周二無雨的概率相同且為,兩天是否下雨互不影響,若兩天都下雨的概率為
(1)求及基地的預(yù)期收益;
(2)若該基地額外聘請(qǐng)工人,可在周一當(dāng)天完成全部采摘任務(wù),若周一無雨時(shí)收益為萬元,有雨時(shí)收益為萬元,且額外聘請(qǐng)工人的成本為元,問該基地是否應(yīng)該額外聘請(qǐng)工人,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com