【題目】現(xiàn)有邊長均為1的正方形正五邊形正六邊形及半徑為1的圓各一個(gè),在水平桌面上無滑動(dòng)滾動(dòng)一周,它們的中心的運(yùn)動(dòng)軌跡長分別為,,,則(

A.B.C.D.

【答案】B

【解析】

由題意可知,它們的中心滾動(dòng)一周的運(yùn)動(dòng)軌跡都是圓心角為2π的弧長,設(shè)半徑分別為r1r2,r3r4,則半徑為中心與頂點(diǎn)的距離,由正方形、正五邊形、正六邊形得幾何特征可知r1r21,r3r41,再利用弧長公式即可得到l1l2l3l4

解:由題意可知,它們的中心滾動(dòng)一周的運(yùn)動(dòng)軌跡都是圓心角為2π的弧長,

設(shè)半徑分別為r1,r2,r3r4,由題意可知,半徑為中心與頂點(diǎn)的距離,

又因?yàn)檎叫、正五邊形、正六邊形的邊長均為1,圓的半徑為1,

對于正方形,如圖所示:,∵∠AOB90°,∴;

對于正五邊形,如圖所示:,∵∠AOB72°<90°,∠OAB=∠OBA54°<72°,∴r1r21;

對于正六邊形,如圖所示:,∠AOB60°,∴△AOB為等邊三角形,∴r3OA1;

r41

又因?yàn)?/span>l12πr1,l22πr2,l32πr3,l42πr4

所以l1l2l3l4,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺中,分別為的中點(diǎn).

)求證:平面;

)若平面,,

,求平面與平面所成角(銳角)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新型冠狀病毒肺炎COVID-19疫情發(fā)生以來,在世界各地逐漸蔓延.在全國人民的共同努力和各級部門的嚴(yán)格管控下,我國的疫情已經(jīng)得到了很好的控制.然而,每個(gè)國家在疫情發(fā)生初期,由于認(rèn)識不足和措施不到位,感染確診人數(shù)都會出現(xiàn)加速增長.如表是小王同學(xué)記錄的某國從第一例新型冠狀病毒感染確診之日開始,連續(xù)8天每日新型冠狀病毒感染確診的累計(jì)人數(shù).

日期代碼

1

2

3

4

5

6

7

8

累計(jì)確診人數(shù)

4

8

16

31

51

71

97

122

為了分析該國累計(jì)感染確診人數(shù)的變化趨勢,小王同學(xué)分別用兩種模型:

,②對變量的關(guān)系進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,殘差圖如下(注:殘差,且經(jīng)過計(jì)算得,,其中,

1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)該選擇哪個(gè)模型?并簡要說明理由;

2)根據(jù)(1)中選定的模型求出相應(yīng)的回歸方程;

3)如果第9天該國仍未采取有效的防疫措施,試根據(jù)(2)中所求的回歸方程估計(jì)該國第9天新型冠狀病毒感染確診的累計(jì)人數(shù).(結(jié)果保留為整數(shù))

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,錯(cuò)誤命題是

A. ,則的逆命題為真

B. 線性回歸直線必過樣本點(diǎn)的中心

C. 在平面直角坐標(biāo)系中到點(diǎn)的距離的和為的點(diǎn)的軌跡為橢圓

D. 在銳角中,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

1)求實(shí)數(shù)的取值范圍;

2)設(shè)兩個(gè)極值點(diǎn)分別為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】41屆世界博覽會于201051日至1031日,在中國上海舉行,氣勢磅礴的中國館——“東方之冠令人印象深刻,該館以東方之冠,鼎盛中華,天下糧倉,富庶百姓為設(shè)計(jì)理念,代表中國文化的精神與氣質(zhì).其形如冠蓋,層疊出挑,制似斗拱.它有四根高33.3米的方柱,托起斗狀的主體建筑,總高度為60.3米,上方的斗冠類似一個(gè)倒置的正四棱臺,上底面邊長是139.4米,下底面邊長是69.9米,則斗冠的側(cè)面與上底面的夾角約為( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線E的參數(shù)方程為為參數(shù)),以O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程分別為,,交曲線E于點(diǎn)AB,交曲線E于點(diǎn)C,D.

1)求曲線E的普通方程及極坐標(biāo)方程;

2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】50名學(xué)生調(diào)查對A、B兩事件的態(tài)度,有如下結(jié)果:贊成A的人數(shù)是全體的五分之三,其余的不贊成,贊成B的比贊成A的多3人,其余的不贊成;另外,對A、B都不贊成的學(xué)生數(shù)比對AB都贊成的學(xué)生數(shù)的三分之一多1. 問對A、B都贊成的學(xué)生有____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱側(cè)面

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案