分析 (1)通過2an=Sn+n可知當n=1時a1=1,當n≥2時2an=Sn+n與2an-1=Sn-1+n-1作差可知an+1=2(an-1+1),進而計算可得結論;
(2)通過(1)利用分組法求和及錯位相減法計算即得結論.
解答 (1)證明:根據題意可知:2an=Sn+n,…(2分)
當n=1時,2a1=a1+1,a1=1,…(3分)
當n≥2時,2an-1=Sn-1+n-1,
相減得:2an-2an-1=Sn-Sn-1+n-(n-1),…(4分)
整理得:an=2an-1+1,即an+1=2(an-1+1),
由于a1+1=2≠0,則an+1≠0,
所以$\frac{{a}_{n}+1}{{a}_{n-1}+1}$=2,(n≥2)…(5分)
所以數列{an+1}是首項為2,公比為2的等比數列.…(6分)
因為${a_n}+1={2^n}$,
所以${a_n}={2^n}-1$.…(7分)
(2)解:∵$n{a_n}=n•{2^n}-n$,
∴${T_n}=(1•2+2•{2^2}+3•{2^3}+…+n•{2^n})-(1+2+3+…+n)$,…(9分)
令S=1•2+2•22+3•23+…+n•2n,
則2S=1•22+2•23+…+(n-1)•2n+n•2n+1,
相減得:-S=2+22+23+…+2n-n•2n+1,…(11分)
故 S=(n-1)•2n+1+2,…(13分)
所以${T_n}=({n-1})•{2^{n+1}}+2-\frac{{n({n+1})}}{2}$.…(14分)
點評 本題考查數列的通項及前n項和,考查錯位相減法,注意解題方法的積累,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{4}$ | B. | 64 | C. | 2$\sqrt{2}$ | D. | $\frac{1}{64}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | an+an+3>an+1+an+2 | B. | an+an+3=an+1+an+2 | ||
C. | an+an+3<an+1+an+2 | D. | 與公比q有關 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 30°或150° | B. | 60° | C. | 60°或120° | D. | 30° |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ②③ | D. | ①②③ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com