18.已知f(x)=m(x+m+5)(x+m+3),g(x)=2x-2.若?x∈R,f(x)<0或g(x)<0,則m的取值范圍是(-4,0).

分析 先求出g(x)<0得解,然后滿足:?x∈R,f(x)<0恒成立即可,結(jié)合一元二次函數(shù)的性質(zhì)進(jìn)行求解即可.

解答 解:由g(x)<0得2x-2<0,得2x<2,得x<1,即當(dāng)x≥1時(shí),g(x)≥0,
又∵?x∈R,f(x)<0或g(x)<0,
∴f(x)=m(x+m+5)(x+m+3)<0,在x≥1時(shí)恒成立,
則二次函數(shù)f(x)=m(x+m+5)(x+m+3)的圖象開(kāi)口只能向下,且與x軸交點(diǎn)都在(1,0)的左側(cè),
∴$\left\{\begin{array}{l}{m<0}\\{-m-3<1}\\{-m-5<1}\end{array}\right.$,即$\left\{\begin{array}{l}{m<0}\\{m>-4}\\{m>-6}\end{array}\right.$,
解得-4<m<0,
所以實(shí)數(shù)m的取值范圍是:(-4,0).
故答案為:(-4,0).

點(diǎn)評(píng) 本題主要考查函數(shù)恒成立問(wèn)題,結(jié)合一元二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.點(diǎn)O為△ABC內(nèi)一點(diǎn),且滿足$\overrightarrow{OA}+\overrightarrow{OB}+4\overrightarrow{OC}=\overrightarrow{0}$,設(shè)△OBC與△ABC的面積分別為S1、S2,則$\frac{{S}_{1}}{{S}_{2}}$=(  )
A.$\frac{1}{8}$B.$\frac{1}{6}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}為等比數(shù)列,數(shù)列{bn}為等差數(shù)列,且a2a3=a5=32,b2+b3=b5=5.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求和Tn=b1S1+b2S2+…+bnSn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知ab≠0,且x2a=x-b(x>0),則(xa+2xb6展開(kāi)式中的常數(shù)項(xiàng)是60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,⊙A的方程為(x-2)2+(y-2)2=1,在第一象限內(nèi)兩半徑都是r,且互相外切的⊙O1和⊙O2均與⊙A相外切,又⊙O1,⊙O2分別與x軸,y軸相切,求r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知圖象連續(xù)不斷的函數(shù)y=f(x)在區(qū)間(0.8,0.9)上有唯一零點(diǎn),如果用二分法求這個(gè)零點(diǎn)(精確度0.0001)的近似值,應(yīng)將區(qū)間(0.8,0.9)等分的次數(shù)至少為( 。
A.11B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知O為坐標(biāo)原點(diǎn),過(guò)拋物線y2=4x的焦點(diǎn)作直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),如果x1+x2=6,那么|AB|=8,如果OA⊥OB,那么y1y2=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知:sinα-sinβ=-$\frac{1}{2}$,cosα-cosβ=$\frac{1}{2}$,則cos(α-β)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,a,b,c是△ABC的∠A,∠B,∠C的對(duì)邊,且b=1,c=$\sqrt{3}$,∠C=$\frac{2}{3}$π.
(1)求cosB的值;
(2)求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案