2.已知數(shù)列{an}與{bn}滿足:a1=1,bnan+an+1+bn+1an+2=0,bn=$\frac{{3+{{(-1)}^n}}}{2}$且anbn+1+an+1bn=1+(-2)n,n∈N*
(Ⅰ)求a2,a3的值;
(Ⅱ)令ck=a2k+1-a2k-1,k∈N*,試判斷:$\frac{{{C_{k+1}}}}{C_k}$是否對于同一個(gè)常數(shù);若是,求出這個(gè)常數(shù),若不是,說明理由.

分析 (Ⅰ)根據(jù)數(shù)列的通項(xiàng)公式和遞推公式即可求出,
(Ⅱ)根據(jù)遞推公式求出數(shù)列的通項(xiàng)公式,即可得$\frac{{c}_{k+1}}{{c}_{k}}$=4

解答 解:(I):由${b_n}=\frac{{3+{{(-1)}^n}}}{2},n∈{N^*}$,可得${b_n}=\left\{\begin{array}{l}1,n為奇數(shù)\\ 2,n為偶數(shù)\end{array}\right.$…1分
又${a_n}{b_{n+1}}+{a_{n+1}}{b_n}=1+{(-2)^n}$,a1=1
當(dāng)n=1時(shí),a1b2+a2b1=-1,得a2=-3…3分
當(dāng)n=2時(shí),a2b3+a3b2=5,得a3=4…5分
(II)證明:${a_n}{b_{n+1}}+{a_{n+1}}{b_n}=1+{(-2)^n}$,n∈N*,
∴令n=2k-1(k∈N*),則$2{a_{2k-1}}+{a_{2k}}=1+{(-2)^{2k-1}}$①…7分
令n=2k(k∈N*),則${a_{2k}}+2{a_{2k+1}}=1+{(-2)^{2k}}$②…9分
由①②得${a_{2k+1}}-{a_{2k-1}}=3×{2^{2k-2}}$,即ck=3×22k-2
因此$\frac{{c}_{k+1}}{{c}_{k}}$=4,…12分.

點(diǎn)評 本題考查了通過數(shù)列的遞推公式求出數(shù)列的通項(xiàng)公式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過點(diǎn)(-1,3)且與直線2x+y+3=0垂直的直線方程為( 。
A.x-2y+7=0B.2x-y+5=0C.x-2y-5=0D.2x+y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.極坐標(biāo)系與直角坐標(biāo)系xoy有相同的長度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,曲線C1的極坐標(biāo)方程為ρ2cos2θ=3,曲線C2的參數(shù)方程為$\left\{{\begin{array}{l}{x=t+m}\\{y=2t-1}\end{array}}\right.$,(t是參數(shù),m是常數(shù))
(1)求C1的直角坐標(biāo)方程和C2的普通方程;
(2)若C2與C1有兩個(gè)不同的公共點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}2x-y+1≤0\\ x-2y-1≥0\end{array}$,則z=27-x•$\frac{1}{{3}^{y}}$的最小值為( 。
A.$\sqrt{3}$B.9C.81D.$27\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)數(shù)列{an}前n項(xiàng)和為Sn
(1)若an=2n+1,則Sn=n2+2n,
(2)若an+Sn=1,則Sn的取值范圍是[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=-x3+2ex2-x2+mx-e2(x>0),若f(x)=0有兩個(gè)相異實(shí)根,則實(shí)數(shù)m的取值范圍是(  )
A.(-e2+2e,0)B.(-e2+2e,+∞)C.(0,e2-2e)D.(-∞,-e2+2e)

第Ⅱ卷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知A(1,-1),B(4,0),C(2,2).平面區(qū)域D由所有滿足$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$(1<λ≤a,1<μ≤b)的點(diǎn)P(x,y)組成.若區(qū)域D的面積為8,則的a+4b最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.過點(diǎn)(5,2),且在x軸上的截距(直線與x軸交點(diǎn)的橫坐標(biāo))是在y軸上的截距的2倍,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.A,B是任意角,“A=B”是“sinA=sinB”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊答案