分析 由題意畫出圖形,設(shè)P的坐標(biāo)為(x,y),由已知求出向量$\overrightarrow{AB}$,$\overrightarrow{AC}$的坐標(biāo),進(jìn)而可得cos∠BAC值,求出sin∠BAC,可得區(qū)域D的面積S=$\sqrt{10}$(a-1)×$\sqrt{10}$(b-1)×sin∠BAC,然后利用基本不等式求得a+4b的最小值.
解答 解:如圖所示,
延長(zhǎng)AB到點(diǎn)N,延長(zhǎng)AC到點(diǎn)M,使得|AN|=a|AB|,|AM|=b|AC|,作CH∥AN,BF∥AM,NG∥AM,MG∥AN,則四邊形ABEC,ANGM,EHGF均為平行四邊形.由題意可知:點(diǎn)P(x,y)組成的區(qū)域D為圖中的四邊形EFGH及其內(nèi)部.
∵點(diǎn)A(1,-1),B(4,0),C(2,2),
∴$\overrightarrow{AB}$=(3,1),$\overrightarrow{AC}$=(1,3),
則cos∠BAC=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}|•|\overrightarrow{AC}|}$=$\frac{3+3}{\sqrt{10}×\sqrt{10}}$=$\frac{3}{5}$,
∴sin∠BAC=$\frac{4}{5}$,
若平面區(qū)域D由所有滿足$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$(1<λ≤a,1<μ≤b)的點(diǎn)P(x,y)組成的區(qū)域.
則區(qū)域D的面積S=$\sqrt{10}$(a-1)×$\sqrt{10}$(b-1)×sin∠BAC=8[ab-(a+b)+1]=8,
∴(a-1)(b-1)=1,即$\frac{1}{a}+\frac{1}=1$.
∴a+4b=(a+4b)$(\frac{1}{a}+\frac{1})$=5+$\frac{a}+\frac{4b}{a}$≥5$+2\sqrt{\frac{a}•\frac{4b}{a}}$=9,當(dāng)且僅當(dāng)a=2b=3時(shí)取等號(hào).
∴a+4b的最小值為9.
故答案為:9.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是平面向量的基本定理,其中求出區(qū)域D的面積S=$\sqrt{10}$(a-1)×$\sqrt{10}$(b-1)×sin∠BAC是解答的關(guān)鍵,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7\sqrt{2}}{2}$ | B. | $\sqrt{29}$ | C. | 5 | D. | 以上都不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com