|
分析:這是一個(gè)棱臺(tái)與棱錐的組合體問題,也是立體幾何常見的問題,這類問題的圖形往往比較復(fù)雜,要認(rèn)真分析各有關(guān)量的位置和大小關(guān)系,因?yàn)樗鼈兊母髁恐g的關(guān)系較密切,所以常引入方程、函數(shù)的知識(shí)去解.
解:如圖,過(guò)高的中點(diǎn)E作棱錐和棱臺(tái)的截面,得棱臺(tái)的斜高EE1和棱錐的斜高為EO1,設(shè),所以
①式兩邊平方,把②代入得:
顯然,由于,所以此題當(dāng)且僅當(dāng)時(shí)才有解.
小結(jié):在棱臺(tái)的問題中,如果與棱臺(tái)的斜高有關(guān),則常應(yīng)用通過(guò)高和斜高的截面,如果和棱臺(tái)的側(cè)棱有關(guān),則需要應(yīng)用通過(guò)側(cè)棱和高的截面,要熟悉這些截面中直角梯形的各元素,進(jìn)而將這些元素歸結(jié)為直角三角形的各元素間的運(yùn)算,這是解棱臺(tái)計(jì)算問題的基本技能之一.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在正四棱臺(tái)內(nèi),以小底為底面。大底面中心為頂點(diǎn)作一內(nèi)接棱錐. 已知棱臺(tái)小底面邊長(zhǎng)為b,大底面邊長(zhǎng)為a,并且棱臺(tái)的側(cè)面積與內(nèi)接棱錐的側(cè)面面積相等,求這個(gè)棱錐的高,并指出有解的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com