【題目】如圖,大擺錘是一種大型游樂(lè)設(shè)備,常見(jiàn)于各大游樂(lè)園.游客坐在圓形的座艙中,面向外.通常大擺錘以壓肩作為安全束縛,配以安全帶作為二次保險(xiǎn).座艙旋轉(zhuǎn)的同時(shí),懸掛座艙的主軸在電機(jī)的驅(qū)動(dòng)下做單擺運(yùn)動(dòng).今年五一,小明去某游樂(lè)園玩“大擺錘”,他坐在點(diǎn)A處,“大擺錘”啟動(dòng)后,主軸在平面內(nèi)繞點(diǎn)O左右擺動(dòng),平面與水平地面垂直,擺動(dòng)的過(guò)程中,點(diǎn)A在平面內(nèi)繞點(diǎn)B作圓周運(yùn)動(dòng),并且始終保持,.已知,在“大擺錘”啟動(dòng)后,給出下列結(jié)論:
①點(diǎn)A在某個(gè)定球面上運(yùn)動(dòng);
②線段在水平地面上的正投影的長(zhǎng)度為定值;
③直線與平面所成角的正弦值的最大值為;
④與水平地面所成角記為,直線與水平地面所成角記為,當(dāng)時(shí),為定值.
其中正確結(jié)論的個(gè)數(shù)為( )
A.1B.2C.3D.4
【答案】C
【解析】
結(jié)合圖形逐個(gè)求解,①求解是否為定值,即可判定;②中投影在不斷變化,不是定值;③中求出線面角的最大值即可判定;④中結(jié)合簡(jiǎn)圖可進(jìn)行判定.
因?yàn)辄c(diǎn)A在平面內(nèi)繞點(diǎn)B作圓周運(yùn)動(dòng),并且始終保持,所以
又因?yàn)?/span>為定值,所以也是定值,所以點(diǎn)A在某個(gè)定球面上運(yùn)動(dòng),故①正確;
因?yàn)辄c(diǎn)A在平面內(nèi)繞點(diǎn)B作圓周運(yùn)動(dòng),所以線段在水平地面上的正投影的長(zhǎng)度也會(huì)變化,故②不正確;
設(shè),則,,當(dāng)時(shí),直線與平面所成角最大;此時(shí)直線與平面所成角的正弦值為,故③正確;
作出簡(jiǎn)圖如下,,所以,故④正確.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱(chēng)粽籺,俗稱(chēng)粽子,古稱(chēng)“角黍”,是端午節(jié)大家都會(huì)品嘗的食品,傳說(shuō)這是為了紀(jì)念戰(zhàn)國(guó)時(shí)期的楚國(guó)大臣、愛(ài)國(guó)主義詩(shī)人屈原.如圖,平行四邊形形狀的紙片是由六個(gè)邊長(zhǎng)為2的正三角形組成的,將它沿虛線對(duì)折起來(lái),可以得到如圖所示粽子形狀的六面體,則該六面體的體積為______________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,右頂點(diǎn),上頂點(diǎn)為B,左右焦點(diǎn)分別為,且,過(guò)點(diǎn)A作斜率為的直線l交橢圓于點(diǎn)D,交y軸于點(diǎn)E.
(1)求橢圓C的方程;
(2)設(shè)P為的中點(diǎn),是否存在定點(diǎn)Q,對(duì)于任意的都有?若存在,求出點(diǎn)Q;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某地區(qū)打算在一塊矩形地塊上修建一個(gè)牧場(chǎng)(ABCDEF圍成的封閉區(qū)域)用來(lái)養(yǎng)殖牛和羊,其中AF=1,AB=10,BC=4,CD=7(單位:百米),DEF是一段曲線形馬路.該牧場(chǎng)的核心區(qū)為等腰直角三角形MPQ所示區(qū)域,該區(qū)域用來(lái)養(yǎng)殖羊,其余區(qū)域養(yǎng)殖牛,且MP=PQ,牧場(chǎng)大門(mén)位于馬路DEF上的M處,一個(gè)觀察點(diǎn)P位于AB的中點(diǎn)處,為了能夠更好觀察動(dòng)物的生活情況,現(xiàn)決定修建一條觀察通道,起點(diǎn)位于距離觀察點(diǎn)P處1百米的O點(diǎn)所示位置,終點(diǎn)位于Q處.如圖2所示,建立平面直角坐標(biāo)系,若滿(mǎn)足.
(1)求的解析式;
(2)求觀察通道OQ長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是由和組成的一個(gè)平面圖形,其中是的高,,,,將和分別沿著,折起,使得與重合于點(diǎn)B,G為的中點(diǎn),如圖2.
(1)求證:平面平面;
(2)若,求點(diǎn)C到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的普通方程;
(2)以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,(),直線與曲線交于,兩點(diǎn),求線段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.
(1)求曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;
(2)若射線與曲線C交于點(diǎn)A(不同于極點(diǎn)O),與直線l交于點(diǎn)B,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè){an}是一個(gè)首項(xiàng)為2,公比為q(q1)的等比數(shù)列,且3a1,2a2,a3成等差數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)已知數(shù)列{bn}的前n項(xiàng)和為Sn,b1=1,且1(n≥2),求數(shù)列{anbn}的前n項(xiàng)和Tn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com