5.設(shè)點(diǎn)M(x0,2-x0),設(shè)在圓O:x2+y2=1上存在點(diǎn)N,使得∠OMN=30°,則實(shí)數(shù)x0的取值范圍為[0,2].

分析 過M作⊙O切線交⊙C于R,則∠OMR≥∠OMN,由題意可得∠OMR≥30°,|OM|≤2.再根據(jù)M(x0,2-x0),求得x0的取值范圍.

解答 解:過M作⊙O切線交⊙C于R,根據(jù)圓的切線性質(zhì),有∠OMR≥∠OMN.
反過來,如果∠OMR≥30°,則⊙O上存在一點(diǎn)N使得∠OMN=30°
∴若圓O上存在點(diǎn)N,使∠OMN=30°,則∠OMR≥30°.
∵|OR|=1,OR⊥MR,∴|OM|≤2.
又∵M(jìn)(x0,2-x0),
∴|OM|2=x02+y02=x02+(2-x02=2x02 -4x0+4,
∴2x02-4x0+4≤4,解得,0≤x0≤2.
∴x0的取值范圍是[0,2],
故答案為[0,2].

點(diǎn)評 本題主要考查了直線與圓相切時(shí)切線的性質(zhì),以及一元二次不等式的解法,綜合考察了學(xué)生的轉(zhuǎn)化能力,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=xlnx.
(1)求$g(x)=\frac{f(x)+2}{x}$的單調(diào)區(qū)間;
(2)若不等式k+2x-e≤f(x)恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,AB=2,BC=1,∠ABC=120°若將△ABC繞直線BC旋轉(zhuǎn)一周,則所形的旋轉(zhuǎn)體的體積是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=sin x+cos x.
(1)若f(x)=2f(-x),求$\frac{co{s}^{2}x-sinxcosx}{1+si{n}^{2}x}$的值;
(2)求函數(shù)F(x)=f(x)f(-x)+f 2(x),x∈(0,$\frac{π}{2}$)的值域和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標(biāo)系中,已知點(diǎn)O(0,0),A(3,0),B(0,3),C(cosα,sinα).
(1)若$\overrightarrow{AC}•\overrightarrow{BC}=-1$,求$\frac{{2{{sin}^2}α+sin2α}}{1+tanα}$的值;
(2)若f(α)=-2cos2α-tsinα-t2+2在$α∈(\frac{π}{2},\frac{3π}{2})$時(shí)有最小值-1,求常數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.函數(shù)f(x)的定義域?yàn)镽,并滿足以下條件:①對任意x∈R,有f(x)>0;②對任意x,y∈R,有f(xy)=[f(x)]y;③$f(\frac{1}{3})>1$.
(1)求證:f(x)在R上是單調(diào)增函數(shù);
(2)若f(4x+a•2x+1-a2+2)≥1對任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的前n項(xiàng)和為Sn且a=$\frac{1}{2}$,an=-2Sn•Sn-1,(n≥2).
(1)數(shù)列{$\frac{1}{{S}_{n}}$}是否為等差數(shù)列,證明你的結(jié)論;
(2)求Sn,an
(3)求證:S${\;}_{1}^{2}$+S${\;}_{2}^{2}$+S${\;}_{3}^{2}$+…S${\;}_{n}^{2}$<$\frac{1}{2}$-$\frac{1}{4n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=$\frac{1}{\sqrt{x-2}}$+lg(5-x)的定義域?yàn)椋?,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=sin(x+\frac{π}{6})+sin(x-\frac{π}{6})+cosx+a$的最小值為1.
(1)求常數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和對稱軸方程.

查看答案和解析>>

同步練習(xí)冊答案