【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)過(guò)橢圓的右焦點(diǎn)作互相垂直的兩條直線,其中直線交橢圓于兩點(diǎn),直線交直線點(diǎn),求證:直線平分線段.

【答案】(1) (2)見(jiàn)證明

【解析】

1)利用,得到,然后代入點(diǎn)即可求解

2)設(shè)直線,以斜率為核心參數(shù),與橢圓聯(lián)立方程,把兩點(diǎn)全部用參數(shù)表示,得出的中點(diǎn)坐標(biāo)為,然后再求出直線的方程,代入的中點(diǎn)即可證明成立

(1)由,所以

由點(diǎn)在橢圓上得解得,

所求橢圓方程為

(2)解法一:當(dāng)直線的斜率不存在時(shí),直線平分線段成立

當(dāng)直線的斜率存在時(shí),設(shè)直線方程為

聯(lián)立方程得,消去

因?yàn)?/span>過(guò)焦點(diǎn),所以恒成立,設(shè),

所以的中點(diǎn)坐標(biāo)為

直線方程為,,可得,

所以直線方程為,

滿足直線方程,即平分線段

綜上所述,直線平分線段

(2)解法二:因?yàn)橹本有交點(diǎn),所以直線的斜率不能為0,

可設(shè)直線方程為,

聯(lián)立方程得,消去

因?yàn)?/span>過(guò)焦點(diǎn),所以恒成立,設(shè),,

,

所以的中點(diǎn)坐標(biāo)為

直線方程為,,由題可得,

所以直線方程為,

滿足直線方程,即平分線段

綜上所述,直線平分線段

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形為正方形, 平面 , 上一點(diǎn),且.

(1)求證: 平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐VABCD中,底面ABCD是菱形,對(duì)角線ACBD交于點(diǎn)O,VO⊥平面ABCD,E是棱VC的中點(diǎn).

1)求證:VA∥平面BDE;

2)求證:平面VAC⊥平面BDE

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求曲線的普通方程和直線的直角坐標(biāo)方程;

2)設(shè)點(diǎn),若直線與曲線相交于、兩點(diǎn),求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且滿足).

(1)求數(shù)列的通項(xiàng)公式;

(2)是否存在實(shí)數(shù),使得數(shù)列為等差數(shù)列?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘數(shù)學(xué)家阿波羅尼斯在他的著作《圓錐曲線論》中記載了用平面切割圓錐得到圓錐曲線的方法.如圖,將兩個(gè)完全相同的圓錐對(duì)頂放置(兩圓錐的軸重合),已知兩個(gè)圓錐的底面半徑均為1,母線長(zhǎng)均為3,記過(guò)圓錐軸的平面為平面(與兩個(gè)圓錐側(cè)面的交線為),用平行于的平面截圓錐,該平面與兩個(gè)圓錐側(cè)面的交線即雙曲線的一部分,且雙曲線的兩條漸近線分別平行于,則雙曲線的離心率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)若處取到極小值,求的值及函數(shù)的單調(diào)區(qū)間;

(2)若當(dāng)時(shí), 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)在區(qū)間上存在零點(diǎn),則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】工廠質(zhì)檢員從生產(chǎn)線上每半個(gè)小時(shí)抽取一件產(chǎn)品并對(duì)其某個(gè)質(zhì)量指標(biāo)進(jìn)行檢測(cè),一共抽取了件產(chǎn)品,并得到如下統(tǒng)計(jì)表.該廠生產(chǎn)的產(chǎn)品在一年內(nèi)所需的維護(hù)次數(shù)與指標(biāo)有關(guān),具體見(jiàn)下表.

質(zhì)量指標(biāo)

頻數(shù)

一年內(nèi)所需維護(hù)次數(shù)

(1)以每個(gè)區(qū)間的中點(diǎn)值作為每組指標(biāo)的代表,用上述樣本數(shù)據(jù)估計(jì)該廠產(chǎn)品的質(zhì)量指標(biāo)的平均值(保留兩位小數(shù));

(2)用分層抽樣的方法從上述樣本中先抽取件產(chǎn)品,再?gòu)?/span>件產(chǎn)品中隨機(jī)抽取件產(chǎn)品,求這件產(chǎn)品的指標(biāo)都在內(nèi)的概率;

(3)已知該廠產(chǎn)品的維護(hù)費(fèi)用為元/次,工廠現(xiàn)推出一項(xiàng)服務(wù):若消費(fèi)者在購(gòu)買該廠產(chǎn)品時(shí)每件多加元,該產(chǎn)品即可一年內(nèi)免費(fèi)維護(hù)一次.將每件產(chǎn)品的購(gòu)買支出和一年的維護(hù)支出之和稱為消費(fèi)費(fèi)用.假設(shè)這件產(chǎn)品每件都購(gòu)買該服務(wù),或者每件都不購(gòu)買該服務(wù),就這兩種情況分別計(jì)算每件產(chǎn)品的平均消費(fèi)費(fèi)用,并以此為決策依據(jù),判斷消費(fèi)者在購(gòu)買每件產(chǎn)品時(shí)是否值得購(gòu)買這項(xiàng)維護(hù)服務(wù)?

查看答案和解析>>

同步練習(xí)冊(cè)答案