11.已知函數(shù)f(x)=$\frac{lnx}{x}$,又α,β為銳角三角形的兩內(nèi)角,則( 。
A.f(sinα)>f(cosβ)B.f(sinα)>f(sinβ)C.f(sinα)<f(cosβ)D.f(cosα)>f(cosβ)

分析 由題意可得可得α+β>$\frac{π}{2}$,故α>$\frac{π}{2}$-β,可得 sinα>cosβ,再由函數(shù)f(x)為(0,1)上的增函數(shù),可得結(jié)論.

解答 解:由于α,β為銳角三角形的兩內(nèi)角,可得α+β>$\frac{π}{2}$,
∴α>$\frac{π}{2}$-β,∴sinα>sin($\frac{π}{2}$-β),
故有 sinα>cosβ,
再由函數(shù)f(x)=$\frac{lnx}{x}$,f′(x)=$\frac{1-lnx}{x}$,
由f′(x)>0,解得:0<x<e,
故f(x)為(0,1)上的增函數(shù),可得f(sinα)>f(cosβ),
故選:A.

點評 本題主要考查函數(shù)的單調(diào)性的定義和性質(zhì),得到sinα>cosβ,是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=x2+$\frac{1}{x}$+2在x=1處的導(dǎo)數(shù)等于( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)α:-2<x<2,β:2a-2≤x<3a-1,且α是β的必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,a,b,c分別是角A,B,C的對邊,如果b=2,c=2$\sqrt{3}$,C=$\frac{2}{3}$π,則S△ABC=_3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若集合M={-1,0,1},則集合M的所有非空真子集的個數(shù)是( 。
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若對任意a∈[3,5]關(guān)于x的方程x2-$\frac{m}{a-1}$x-6=0在區(qū)間[3,m]上都有實數(shù)解,則實數(shù)m的取值范圍是(  )
A.{m|m≥4}B.{m|m≥2$\sqrt{3}$}C.{m|m≤2$\sqrt{3}$或m≥4}D.{m|4≤m≤2$\sqrt{3}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知ABC-A1B1C1是各條棱長均等于2的正三棱柱,D是側(cè)棱CC1的中點,點C1到平面AB1D的距離( 。
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=$\sqrt{1-(x-2016)^{2}}$+2017,則對于滿足2016<x1<x2<2017的任意實數(shù)x1,x2,有(  )
A.x1f(x2)>x2f(x1B.x1f(x2)<x2f(x1C.x1f(x2)=x2f(x1D.x1f(x1)=x2f(x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.給出一個如圖所示的程序框圖,若要使輸入的x值與輸出的y值相等,則這樣的x值的個數(shù)是3個.

查看答案和解析>>

同步練習(xí)冊答案