函數(shù)的定義域為D,若存在閉區(qū)間[a,b]D,使得函數(shù)滿足:(1)在[a,b]內(nèi)是單調(diào)函數(shù);(2)在[a,b]上的值域為[2a,2b],則稱區(qū)間[a,b]為y=的“美麗區(qū)間”.下列函數(shù)中存在“美麗區(qū)間”的是           . (只需填符合題意的函數(shù)序號) 

①、;         ②、

③、;         ④、.

 

【答案】

①③④

【解析】

試題分析:函數(shù)中存在“美麗區(qū)間”的定義可知:①在[a,b]內(nèi)是單調(diào)增函數(shù);

,解得∴f(x)=x2(x≥0),若存在“美麗區(qū)間”[0,2],∴f(x)=x2(x≥0),若存在“美麗區(qū)間”[0,2];②f(x)=ex(x∈R),若存在“美麗區(qū)間”[a,b],則,所以,構建函數(shù)g(x)=ex-2x,∴g′(x)=ex-2,∴函數(shù)在(-∞,ln2)上單調(diào)減,在(ln2,+∞)上單調(diào)增,∴函數(shù)在x=ln2處取得極小值,且為最小值.∵g(ln2)=2-2ln2>0,∴g(x)>0恒成立,∴ex-2x=0無解,故函數(shù)不存在“美麗區(qū)間”;③上單調(diào)遞減,若存在“美麗區(qū)間”[a,b],則,則,故存在;④,,若存在“倍值區(qū)間”[a,b]⊆[0,1],則∴a=0,b=1,若存在“美麗區(qū)間”[0,1];故存在“美麗區(qū)間”的是①③④.

考點:1.函數(shù)的值域 ;2.函數(shù)的單調(diào)性

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)的定義域為D,若滿足:①f(x)在D內(nèi)是單調(diào)函數(shù);②存在[a,b]上的值域為[
a
2
,
b
2
]
,那么就稱函數(shù)y=f(x)為“成功函數(shù)”,若函數(shù)f(x)=logc{cx+t)(c>0,c≠1)是“成功函數(shù)”,則t的取值范圍為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)的定義域為D,若滿足①在D內(nèi)是單調(diào)函數(shù),②存在使上的值域為,那么就稱為“好函數(shù)”,F(xiàn)有            是“好函數(shù)”,則的取值范圍是                             (    )

A.      B.         C.          D.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年甘肅省張掖市高三11月月考理科數(shù)學試卷(解析版) 題型:選擇題

函數(shù)的定義域為D,若對于任意,當時,都有,則稱函數(shù)在D上為非減函數(shù),設函數(shù)在[0,1]上為非減函數(shù),且滿足以下三個條件:①;②;③.則等于(    )

A.              B.              C.             D.無法確定

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省揭陽市高三3月第一次高考模擬理科數(shù)學試卷(解析版) 題型:填空題

函數(shù)的定義域為D,若對任意的、,當時,都有,則稱函數(shù)在D上為“非減函數(shù)”.設函數(shù)上為“非減函數(shù)”,且滿足以下三個條件:(1);(2);(3),則     、        

 

查看答案和解析>>

同步練習冊答案