【題目】已知函數(shù),過點作與軸平行的直線交函數(shù)的圖像于點,過點作圖像的切線交軸于點,則面積的最小值為____.
【答案】
【解析】
求出f(x)的導數(shù),令x=a,求得P的坐標,可得切線的斜率,運用點斜式方程可得切線的方程,令y=0,可得B的坐標,再由三角形的面積公式可得△ABP面積S,求出導數(shù),利用導數(shù)求最值,即可得到所求值.
函數(shù)f(x)=的導數(shù)為f′(x),
由題意可令x=a,解得y,
可得P(a,),
即有切線的斜率為k,
切線的方程為y﹣(x),
令y=0,可得x=a﹣1,
即B( a﹣1,0),
在直角三角形PAB中,|AB|=1,|AP|,
則△ABP面積為S(a)|AB||AP|,a>0,
導數(shù)S′(a),
當a>1時,S′>0,S(a)遞增;當0<a<1時,S′<0,S(a)遞減.
即有a=1處S取得極小值,且為最小值e.
故答案為:e.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知直線∶和圓∶,是直線上一點,過點作圓的兩條切線,切點分別為.
(1)若,求點坐標;
(2)若圓上存在點,使得,求點的橫坐標的取值范圍;
(3)設線段的中點為,與軸的交點為,求線段長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某銷售公司擬招聘一名產(chǎn)品推銷員,有如下兩種工資方案:
方案一:每月底薪2000元,每銷售一件產(chǎn)品提成15元;
方案二:每月底薪3500元,月銷售量不超過300件,沒有提成,超過300件的部分每件提成30元.
(1)分別寫出兩種方案中推銷員的月工資(單位:元)與月銷售產(chǎn)品件數(shù)的函數(shù)關系式;
(2)從該銷售公司隨機選取一名推銷員,對他(或她)過去兩年的銷售情況進行統(tǒng)計,得到如下統(tǒng)計表:
月銷售產(chǎn)品件數(shù) | 300 | 400 | 500 | 600 | 700 |
次數(shù) | 2 | 4 | 9 | 5 | 4 |
把頻率視為概率,分別求兩種方案推銷員的月工資超過11090元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),下列結(jié)論中正確的是( )
A.函數(shù)在時,取得極小值
B.對于,恒成立
C.若,則
D.若,對于恒成立,則的最大值為,的最小值為1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù),),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程是.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)已知直線與曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C1:y=cos x,C2:y=sin (2x+),則下面結(jié)論正確的是( )
A. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2
B. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2
C. 把C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2
D. 把C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)一種產(chǎn)品,每年投入固定成本0.5萬元,此外每生產(chǎn)100件這種產(chǎn)品還需要增加投資0.25萬元,經(jīng)預測可知,市場對這種產(chǎn)品的年需求量為500件,當出售的這種產(chǎn)品的數(shù)量為t(單位:百件)時,銷售所得的收入約為(萬元).
(1)若該公司的年產(chǎn)量為x(單位:百件),試把該公司生產(chǎn)并銷售這種產(chǎn)品所得的年利潤表示為年產(chǎn)量x的函數(shù);
(2)當這種產(chǎn)品的年產(chǎn)量為多少時,當年所得利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),那么下列結(jié)論中錯誤的是( )
A. 若是的極小值點,則在區(qū)間上單調(diào)遞減
B. ,使
C. 函數(shù)的圖像可以是中心對稱圖形
D. 若是的極值點,則
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com