【題目】已知函數(shù)f(x)=2sinx( ).
(1)求函數(shù)f(x)在( )上的值域;
(2)在△ABC中,f(C)=0,且sinB=sinAsinC,求tanA的值.

【答案】
(1)解:函數(shù)f(x)=2sinx( ).

化簡可得:f(x)=2 sinxcosx﹣2sin2x= sin2x+cos2x﹣1=2sin(2x+ )﹣1.

∵x∈( )上時,

可得:2x+ ∈( ).

<sin(2x+ )≤1

故得函數(shù)f(x)在( )上的值域為(﹣2,1].


(2)解:∵f(x)=2sin(2x+ )﹣1,

∵f(C)=0,

即sin(2C+ )=

∵0<C<π,

∴2C+ =

得:C=

∵sinB=sinAsinC,

可得sin(A+C)=sinAsinC,

∴sin(A+ )=sinAsin

得:( )sinA= cosA.

那么:tanA= =


【解析】(1)利用二倍角以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,x∈( )上時,求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),即得到f(x)的值域.(2)根據(jù)f(C)=0求出角C,sinB=sinAsinC=sin(A+C)利用和與差公式,即可求tanA的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2為雙曲線 的左右焦點,過F1的直線l與圓x2+y2=b2相切于點M,且|MF2|=2|MF1|,則直線l的斜率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域為R的偶函數(shù)f(x)滿足對x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時,f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知從A地到B地共有兩條路徑L1和L2 , 據(jù)統(tǒng)計,經(jīng)過兩條路徑所用的時間互不影響,且經(jīng)過L1與L2所用時間落在各時間段內(nèi)的頻率分布直方圖分別如圖(1)和圖(2).
現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于從A地到B地.
(1)為了盡最大可能在各自允許的時間內(nèi)趕到B地,甲和乙應(yīng)如何選擇各自的路徑?
(2)用X表示甲、乙兩人中在允許的時間內(nèi)能趕到B地的人數(shù),針對(1)的選擇方案,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某班甲、乙兩位同學(xué)在5次階段性檢測中的數(shù)學(xué)成績(百分制)的莖葉圖,甲、乙兩位同學(xué)得分的中位數(shù)分別為x1 , x2 , 得分的方差分別為y1 , y2 , 則下列結(jié)論正確的是(
A.x1<x2 , y1<y2
B.x1<x2 , y1>y2
C.x1>x2 , y1>y2
D.x1>x2 , y1<y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:x2=2py(p>0)的焦點為F,A為C上異于原點的任意一點,點A到x軸的距離等于|AF|﹣1.

(1)求拋物線C的方程;
(2)直線AF與C交于另一點B,拋物線C分別在點A,B處的切線交于點P,D為y軸正半軸上一點,直線AD與C交于另一點E,且有|FA|=|FD|,N是線段AE的靠近點A的四等分點.
(i)證明點P在△NAB的外接圓上;
(ii)△NAB的外接圓周長是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐PABCD中,DA⊥平面PAB,DCAB,DADC=2,ABAP=4,∠PAB=120°,MPB中點.

(Ⅰ)求證:CM∥平面PAD;

(Ⅱ)求二面角MACB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+a|+|x﹣2|
(1)當(dāng)a=﹣3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)(其中|φ|< )的圖象如圖所示,為了得到y(tǒng)=sinωx的圖象,只需把y=f(x)的圖象上所有點(
A.向左平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向右平移 個單位長度

查看答案和解析>>

同步練習(xí)冊答案