8.復(fù)數(shù)z滿足z(1+i)=2i(i為虛數(shù)單位),則z的虛部為( 。
A.1B.-1C.-iD.i

分析 把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:由z(1+i)=2i,得z=$\frac{2i}{1+i}=\frac{2i(1-i)}{(1+i)(1-i)}=\frac{2+2i}{2}=1+i$,
∴z的虛部為1.
故選:A.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-x|x-a|-3a,a>0.
(1)若a=1,求f(x)的單調(diào)區(qū)間;
(2)求函數(shù)在x∈[0,3]上的最值;
(3)當(dāng)a∈(0,3)時,若函數(shù)f(x)恰有兩個不同的零點x1,x2,求$|{\frac{1}{x_1}-\frac{1}{x_2}}|$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{bn}是首項為-34,公差為1的等差數(shù)列,數(shù)列{an}滿足an+1-an=2n(n∈N*),且a1=b37,則數(shù)列{$\frac{_{n}}{{a}_{n}}$}的最大值為$\frac{1}{{2}^{36}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點為F1,F(xiàn)2,過F2作x軸的垂線與C相交于A,B兩點,F(xiàn)1B與y軸交于點D,若$\overrightarrow{B{F}_{1}}$•$\overrightarrow{D{F}_{2}}$=0,則橢圓C的離心率等于$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)由不等式$\left\{\begin{array}{l}{x+y-1≥0}&{\;}\\{x-y+1≥0}&{\;}\\{2x-y-2≤0}&{\;}\end{array}\right.$表示的平面區(qū)域為4,若直線kx-y+1=0(k∈R)平分A的面積,則實數(shù)k=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.斧頭的形狀叫楔形,在《算數(shù)書》中又稱之為“鄆(y$\stackrel{、}{u}$n)都”或“壍(qi$\stackrel{、}{a}$n)堵”:其上底是一矩形,下底是一線段.有一斧頭:上厚為三,下厚為六,高為五及袤(m$\stackrel{、}{a}$o)為二,問此斧頭的體積為幾何?意思就是說有一斧頭形的幾何體,上底為矩形,下底為一線段,上底的長為3,下底線段長為6,上下底間的距離(高)為5,上底矩形的寬為2,則此幾何體的體積是( 。
A.6B.10C.16D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖所示的等腰直角三角形表示一個水平放置的平面圖形的直觀圖,則這個平面圖形的周長為( 。
A.2+$\sqrt{2}+\sqrt{6}$B.4+2$\sqrt{2}$+2$\sqrt{6}$C.2+2$\sqrt{2}$+2$\sqrt{3}$D.4+4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知x>0時,f(x)=x-2013,且知f(x)在定義域上是奇函數(shù),則當(dāng)x<0時,f(x)的解析式是( 。
A.f(x)=x+2013B.f(x)=-x+2013C.f(x)=-x-2013D.f(x)=x-2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的兩條漸近線將平面劃分為“上、下、左、右”四個區(qū)域(不含邊界),若點(2,1)在“右”區(qū)域內(nèi),則雙曲線離心率e的取值范圍是( 。
A.$({1,\frac{{\sqrt{5}}}{2}})$B.$({\frac{{\sqrt{5}}}{2},+∞})$C.$({1,\frac{5}{4}})$D.$({\frac{5}{4},+∞})$

查看答案和解析>>

同步練習(xí)冊答案