設(shè)a1,d為實(shí)數(shù),首項(xiàng)為a1,公差為d的等差數(shù)列{an}的前n項(xiàng)的和為Sn,滿足S5S6=-15,則a1的取值范圍是( 。
A、(-∞,-2
2
]∪[2
2
,+∞)
B、[2
2
,+∞)
C、(-∞,-2
10
]∪[2
10
,+∞)
D、[2
10
,+∞)
考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列求和公式結(jié)合題意可得關(guān)于d的一元二次方程,由△≥0可得a1的不等式,解不等式可得.
解答: 解:由題意可得S5S6+15=0,
∴(5a1+10d)(6a1+15d)+15=0,整理得10d2+9a1d+2a12+1=0
此方程可看作關(guān)于d的一元二次方程,它一定有實(shí)根,
∴△=(9a12-4×10×(2a12+1)≥0,
整理得a12≥40,解得a1≥2
10
或a1≤-2
10

故選:C
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì)和求和公式,涉及一元二次方程根的存在性,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

目標(biāo)函數(shù)z=4y-2x,在條件
-1≤-x+y≤1
0≤x+y≤2
下的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-e-x,其中e是自然對(duì)數(shù)的底數(shù).
(Ⅰ)證明:f(x)是R上的奇函數(shù);
(Ⅱ)若關(guān)于x的不等式mf(x)≤e-x-m-1在(0,+∞)上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

光明中學(xué)準(zhǔn)備組織學(xué)生去國家體育場(chǎng)“鳥巢”參觀.參觀期間,校車每天至少要運(yùn)送544名學(xué)生.該中學(xué)后勤集團(tuán)有7輛小巴、4輛大巴,其中小巴能載16人、大巴能載32人. 已知每輛客車每天往返次數(shù)小巴為5次、大巴為3次,每次運(yùn)輸成本小巴為48元,大巴為60元.請(qǐng)問每天應(yīng)派出小巴、大巴各多少輛,能使總費(fèi)用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=
1
3
x3+
4
3
在點(diǎn)(2,4)處的切線方程是( 。
A、x+4y-4=0
B、x-4y-4=0
C、4x+y-4=0
D、4x-y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=2px的焦點(diǎn)與橢圓x2+3y2=6的右焦點(diǎn)重合,則p的值為( 。
A、-2B、2C、-4D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5名同學(xué)去聽同時(shí)舉行的3個(gè)課外知識(shí)講座,每名同學(xué)可以自由選擇聽其中的1個(gè)講座,不同的選擇方法數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

使函數(shù)f(x)=sin(2x+θ)+
3
cos(2x+θ)的圖象關(guān)于原點(diǎn)對(duì)稱,且滿足?x1,x2∈[0,
π
4
],恒有(x1-x2)[f(x1)-f(x2)]<0的θ的一個(gè)值是( 。
A、
π
3
B、
3
C、
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A=60°,b=1,其面積為
3
,則c等于(  )
A、5
B、
14
C、4
D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案