已知實(shí)數(shù)x,y滿足約束條件
2x-y≥0
y≥x
y≥-x+b
,若z=2x+y的最小值為3,則實(shí)數(shù)b=( 。
A、
9
4
B、
3
2
C、1
D、
3
4
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,根據(jù)z=2x+y的最大值為3,先確定取得最大值時(shí)的最優(yōu)解,即可求出b的值.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過點(diǎn)A時(shí),直線y=-2x+z的截距最小,
此時(shí)z最小為3,即2x+y=3.
2x+y=3
y=2x
,解得
x=
3
4
y=
3
2
,即A(
3
4
3
2
),
此時(shí)點(diǎn)A也在直線y=-x+b上.
3
2
=-
3
4
+b,
即b=
9
4

故選:A
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,先確定最優(yōu)解以及,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
x2+4x,x≥0
x2-4x,x<0
,滿足f(2a-1)<f(a),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=x+1與橢圓
x2
16
+
y2
4
=1交于A,B兩點(diǎn).
(1)求線段AB中點(diǎn)M的坐標(biāo);
(2)求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},a1=-5,前11項(xiàng)平均值為5,從中抽去一項(xiàng),余下的平均值為4,則抽取的項(xiàng)為( 。
A、a11
B、a10
C、a9
D、a8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

冪函數(shù)y=f(x)的圖象過點(diǎn)(4,2),那么f(
1
16
)的值為( 。
A、
1
2
B、
1
4
C、
1
8
D、
1
32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是R上的減函數(shù),設(shè)a=f(log23),b=f(log 
1
2
3),c=f(3-0.5),則將a,b,c從小到大排列為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,表示同一函數(shù)的一組是( 。
A、f(x)=
|x|
x
,g(x)=
1(x≥0)
-1(x<0)
B、f(x)=lg(x(x+1)),g(x)=lgx+lg(x+1)
C、f(x)=x-1(x∈R),g(x)=x-1(x∈N)
D、f(x)=x2+x-1,g(x)=t2+t-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若過點(diǎn)A(0,-1)的直線l與圓x2+(y-3)2=4的圓心的距離記為d,則d的取值范圍為( 。
A、[0,4]
B、[0,3]
C、[0,2]
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中裝有若干個(gè)形狀大小相同的小球,其中2個(gè)標(biāo)有數(shù)字1,3個(gè)標(biāo)有數(shù)字2,n個(gè)標(biāo)有數(shù)字3,取出一球記下所標(biāo)數(shù)字后放回,再取一球記下所標(biāo)數(shù)字,兩次取球所標(biāo)數(shù)字不相同的概率與兩次取球所標(biāo)數(shù)字相同的概率之差為
5
16

(1)求n的值;
(2)記兩次取球所標(biāo)數(shù)字之和為X,求X的分布列與均值(數(shù)學(xué)期望).

查看答案和解析>>

同步練習(xí)冊(cè)答案